首先,L2-norm(欧几里得范数)作为衡量向量长度的标准,提供了一种直观且数学属性简单的度量方式。L2-norm定义为向量各元素平方和的平方根,它代表了梯度向量在n维空间中的“真实”长度,有助于维持梯度更新的方向不变,同时限制其幅度。这种方式有助于保持训练过程的稳定性,避免梯度爆炸问题。其次,L2-n...
虽然单独使用 dropout 就可以使得模型获得良好表现,不过,如果搭配Max-Norm 食用的话,那么效果更佳。 对于每一个神经元 Max-Norm Regularization 的目的在于限制输入链接权重的大小,使得||w||_2 \ll r,其中 r 是Max-Norm 可调节超参数,||.||_2是L2范数。在每一个 training step 需要计算||w||_2,以确保...
l2norm用法 L2 norm其实是一个比较朴素且应用比较广泛的正则化算法,从过去的传统算法到现在的深度学习,从数据预处理到模型优化,都或多或少的会用到这个思想。其算法的过程也比较简单: 1. 求出当前层数据的平方。 2. 求出当前层数据的平方和。 3. 将第一步得到的数据除以第二步得到的数据。 L2 norm的作用...
在数学上,L2-norm定义为向量各元素的平方和的平方根。使用L2-norm作为梯度裁剪的基准,因为它代表了梯...
L1 norm和L2 norm 如果扩展到Lp范数,个人觉得这个解释的比较到位。 具体到L1范数和L2范数。具体到向量长度或举例,简单地理解,L1对应的是曼哈顿距离,L2对应的是欧几里得距离。 L1 norm: L2 norm:
简介:L2范数(L2 norm),也称为欧几里德范数(Euclidean norm)或2-范数,是向量元素的平方和的平方根。它在数学和机器学习中经常被用作一种正则化项、距离度量或误差度量。 L2范数(L2 norm),也称为欧几里德范数(Euclidean norm)或2-范数,是向量元素的平方和的平方根。它在数学和机器学习中经常被用作一种正则化...
l1-norm 和 l2-norm是常见的模型优化过程中的正则化项,对应到线性回归的领域分别为lasso Regression和 Ridge Regression,也就是 lasso 回归(有的地方也叫套索回归)和岭回归(也叫脊回归)。在深度学习领域也用l1和l2范数做正则化处理。这里简要介绍一下lasso和ridge(Ridge相关详见另一篇笔记:【https://blog.csdn.ne...
相比之下,余弦距离,用公式[公式]定义,主要关注向量的方向一致性,其结果范围是固定的,与向量长度和维度无关。它衡量的是两向量在空间中的夹角,因此,它是对方向关系的精确度量。当对向量x和y进行L2-norm处理,即应用[公式]后,我们可以观察到一个等效性:优化原始的欧式距离[公式]实际上等同于...
L2 norm就是欧几里德距离 L1 norm就是绝对值相加,又称曼哈顿距离 搞统计的人总是喜欢搞什么“变量选择”,变量选择实际上的 限制条件是L0 Norm,但这玩艺不好整, 于是就转而求L1 Norm(使用均方误差,就是Lasso ,当然在Lasso出来之前搞信号处理的就有过类似的工 ...
其中,余弦距离衡量两向量x,y方向的一致性。其结果的范围固定,与向量的长度无关,与向量的维度无关。 欧式距离全面衡量向量的差异性,既考虑方向,也考虑尺度。其结果的范围不固定,受到向量长度以及向量维度的影响。 如果向量x,y进行了L2-norm,则有: |x|=|y|=||x||2=||y||2=1,此时: ...