Kuhn-Munkres算法 KM算法是通过给每个顶点一个标号(叫做顶标)来把求最大权匹配的问题转化为求完备匹配的问题的。设顶点Xi的顶标为A[i],顶点Yi的顶标为B[i],顶点Xi与Yj之间的边权为w[i,j]。在算法执行过程中的任一时刻,对于任一条边(i,j),A[i]+B[j]>=w[i,j]始终成立。KM算法的正确性基于以下...
基本原理 该算法是通过给每个顶点一个标号(叫做顶标)来把求最大权匹配的问题转化为求完备匹配的问题的。设顶点Xi的顶标为A[ i ],顶点Yj的顶标为B[ j ],顶点Xi与Yj之间的边权为w[i,j]。在算法执行过程中的任一时刻,对于任一条边(i,j),A[ i ]+B[j]>=w[i,j]始终成立。 KM算法的正确性基于以...
KM算法是通过给每个顶点一个标号(叫做顶标)来把求最大权匹配的问题转化为求完备匹配的问题的。设顶点Xi的顶标为A[i],顶点Yi的顶标为B[i],顶点Xi与Yj之间的边权为w[i,j]。在算法执行过程中的任一时刻,对于任一条边(i,j),A[i]+B[j]>=w[i,j]始终成立,初始A[i]为与xi相连的边的最大边权,B[...
二分图最佳匹配 (kuhn munkras 算法 O(m*m*n)). 邻接矩阵形式 。 返回最佳匹配值,传入二分图大小m,n 邻接矩阵 map ,表示权,m1,m2返回一个最佳匹配,为匹配顶点的match值为-1, 一定注意m<=n,否则循环无法终止,最小权匹配可将全职取相反数。
KM算法,即Kuhn-Munkres算法(又称为匈牙利算法),是一种用于求解二分图最大权匹配问题的经典算法。它由Eugene L. Lawler于1960年首次提出,后来由James Munkres在1957年独立发表,因此常称为Kuhn-Munkres算法。 二分图最大权匹配问题是指给定一个带权二分图,要求在图中选取权重之和最大的边集合,使得任意两条边不属...
Kuhn-Munkres算法(二分图最大权匹配),二分图如果是没有权值的,求最大匹配。则是用匈牙利算法求最大匹配。如果带了权值,求最大或者最小权匹配,则必须用KM算法。其实最大和最小权匹配都是一样的问题。只要会求最大匹配,如果要求最小权匹配,则将权值取相反数,再把结果
Kuhn-Munkres算法(二分图最大权匹配)二分图如果是没有权值的,求最大匹配。则是用匈牙利算法求最大匹配。如果带了权值,求最大或者最小权匹配,则必须用KM算法。其实最大和最小权匹配都是一样的问题。只要会求最大匹配,如果要求最小权匹配,则将权值取相反数,再把结果取相反数,那么最小权匹配就求出来了。KM算...
诸如此些问题,数学上抽象出来都是一个带权二分图的最优分配问题,这正是Kuhn-Munkres (KM)算法准备解决的问题。在了解这个算法之前,我们需要粗略掌握一些图论基础。为简单起见,笔者尽量避免课本上晦涩深奥的数学定义和符号,使用通俗易懂的语言。 图(Graph,G)是由一组顶点(Vertex,V)以及顶点与顶点之间的连线(称作边...
Kuhn-Munkres算法Maigo的KM算法讲解(的确精彩)KM算法是通过给每个顶点一个标号(叫做顶标)来把求最大权匹配的问题转化为求完备匹配的问题的。设顶点Xi的顶标为A[i],顶点Yi的顶标为B[i],顶点Xi与Yj之间的边权为w[i,j]。在算法执行过程中的任一时刻,对于任一条边(i,j),A[i]+B[j]>=w[i,j]始终成立...