KNN全称K-Nearest Neighbor,即k近邻,是最简单的机器学习算法之一。它是一种基于实例的有监督学习算法,本身不需要进行训练,不会得到一个概括数据特征的模型,只需要选择合适的参数K就可以进行应用,每次使用KNN进行预测时,所有的训练数据都会参与计算。 二、算法描述 基本步骤: 计算待测数据点与所有训练数据的距离; 距离...
在python命令行下输入下图所示。 至此,我们就完成了kNN在约会网站配对率改善的应用。 本文中使用的数据集以及完整的python实现代码请点解百度云链接:http://pan.baidu.com/s/1boPnSBH
knn=KNeighborsClassifier(n_neighbors=15)knn.fit(data_train_minmax,label_train)score=knn.score(X=data_test_minmax,y=label_test,sample_weight=None)print(score)#completion defclassifyperson():#此为手动输入参数预测结果需要的函数 percentage=float(input('percentage of time spent playing video games?')...
import kNN >>> group,labels=kNN.createDataSet() >>> kNN.classify0([1.1,1.2],group,labels,3) 'A' >>> kNN.classify0([0.1,0.2],group,labels,3) 'B' >>> 1. 2. 3. 4. 5. 6. 7. 用kNN改进约会网站配对效果 首先要从文本文件中解析数据,文本文件中统计了以下3中特征: 1、每年获得的飞...
wk-NNC算法是对经典knn算法的改进,这种方法是对k个近邻的样本按照他们距离待分类样本的远近给一个权值w: 是第i个近邻的权值,其中1<i<k, 是待测样本距离第i个近邻的距离。 用python实现这个算法比较简单: def wk_knn(inX, dataSet, labels, k): dataSetSize = dataSet.shape[0] diff...
kNN实战之改进约会网站配对效果 引言 简单的说,KNN算法采用测量不同特征值之间的距离方法进行分类。工作原理:存在一个样本数据集,即训练数据集,并且样本集中每个样本数据都存在标签,即我们知道样本数据集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然...
这个时候,我们有理由认为该位置样本属于数量小的样本所属的一类,但是,KNN却不关心这个问题,它只关心哪类样本的数量最多,而不去把距离远近考虑在内,因此,我们可以采用权值的方法来改进。和该样本距离小的邻居权值大,和该样本距离大的邻居权值则相对较小,由此,将距离远近的因素也考虑在内,避免因一个样本过大导致...
Demo:使用kNN算法改进约会网站的配对效果 (1)准备数据:从文本文件中解析数据 文本文件下载地址 https://pan.baidu.com/s/1o8BSXWu deffile2matrix(filename): fr=open(filename) arrayOLines=fr.readlines()#得到文件行数numberOfLines =len(arrayOLines)#创建以0填充的矩阵returnMat = zeros((numberOfLines, 3...
KNN算法 基本算法 1、KNN算法概述 kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 2、KNN算法介绍 最简单最初级的分类器是...