2.具体实现 (1)方法一 ①利用slearn库中的load_iris()导入iris数据集 ②使用train_test_split()对数据集进行划分 ③KNeighborsClassifier()设置邻居数 ④利用fit()构建基于训练集的模型 ⑤使用predict()进行预测 ⑥使用score()进行模型评估 说明:本代码来源于《Python机器学习基础教程》在此仅供学习使用。 代码语...
KNneighborsClassifier参数说明: n_neighbors:默认为5,就是k-NN的k的值,选取最近的k个点。 weights:默认是uniform,参数可以是uniform、distance,也可以是用户自己定义的函数。uniform是均等的权重,就说所有的邻近点的权重都是相等的。distance是不均等的权重,距离近的点比距离远的点的影响大。用户自定义的函数,接收...
KNN分类器在众多分类算法中属于最简单的之一,需要注意的地方不多。有这几点要说明: 1、KNeighborsClassifier可以设置3种算法:‘brute’,‘kd_tree’,‘ball_tree’。如果不知道用哪个好,设置‘auto’让KNeighborsClassifier自己根据输入去决定。 2、注意统计准确率时,分类器的score返回的是计算正确的比例,而不是R2。
knn=KNeighborsClassifier(n_neighbors=3)# 在训练集上训练模型 knn.fit(X_train,y_train)# 在测试集上进行预测 y_pred=knn.predict(X_test)# 计算准确率 accuracy=metrics.accuracy_score(y_test,y_pred)print(f'准确率:{accuracy}') 应用场景
knn = KNeighborsClassifier(n_neighbors=k) knn.fit(X_train, y_train) y_pred = knn.predict(X_test) accuracies.append(accuracy_score(y_test, y_pred)) 6. 选择最佳K值 我们可以绘制出不同K值下模型的准确率,以找到最佳的K值...
importnumpyimportosimportmatplotlib.pyplot as pltfromsklearn.neighborsimportKNeighborsClassifier img=plt.imread(r"D:\Python\代码\Machine-Learn\1-KNN\data\手写字母测试与训练\梵文识别学习\Test\character_1_ka\1339.png") plt.imshow(img,cmap=plt.cm.gray) ...
在Python中,我们可以借助强大的机器学习库scikit-learn轻松实现KNN算法。以下是一个完整的示例,展示了如何使用scikit-learn对样本数据集进行分类:from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics ...
(1)kNN算法_手写识别实例——基于Python和NumPy函数库 1、kNN算法简介 kNN算法,即K最近邻(k-NearestNeighbor)分类算法,是最简单的机器学习算法之一,算法思想很简单:从训练样本集中选择k个与测试样本“距离”最近的样本,这k个样本中出现频率最高的类别即作为测试样本的类别。下面的简介选自wiki百科:http:///wiki/%E...
在推荐系统中,KNN算法可以根据用户的兴趣和行为来推荐相关的物品或内容。 手写数字识别模型完整Python代码 import pandas as pd from PIL import Image import numpy as np from sklearn.neighbors import KNeighborsClassifier as KNN df_img=pd.DataFrame({ '文件名':['手写3_1.png','手写3_2.png','手写3_...
python knn KNeighborsClassifier 最近邻算法选项用法示例详解 sklearn.neighbors.KNeighborsClassifier 概述 参数 属性 方法 示例 方法 fit(X, y) get_metadata_routing() get_params([deep]) kneighbors([X, n_neighbors, return_distance]) kneighbors_graph([X, n_neighbors, mode]) predict(X) predict_prob...