K-Means算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从而发现给定数据集中的K个类,且每个类的中心是根据类中所有数值的均值得到的,每个类的中心用聚类中心来描述。对于给定的一个(包含n个一维以及一维以上的数据点的)数据集X以及要得到的类别数量K,选取欧式距离作为相似度指标,聚类目标实施的个类的聚类...
K均值(K-Means)算法是无监督的聚类方法,实现起来比较简单,聚类效果也比较好,因此应用很广泛。K-Means算法针对不同应用场景,有不同方面的改进。我们从最传统的K-Means算法讲起,然后在此基础上介绍初始化质心优化K-Means++算法,距离计算优化Elkan K-Means算法和大样本情况下Mini Batch K-Means算法。 K-Means算法的...
K-Means算法是一个计算成本很大的算法。K-Means算法的平均复杂度是O(k*n*T),其中k是超参数,即所需要输入的簇数,n是整个数据集中的样本量,T是所需要的迭代次数。在最坏的情况下,KMeans的复杂度可以写作O(n(k+2)/p),其中n是整个数据集中的样本量,p是特征总数。4. 聚类算法的模型评估指标 不同于...
图4:将类内之间数据的均值作为聚类中心,更新聚类中心。 最后判断算法结束与否即可,目的是为了保证算法的收敛。 二python实现 首先,需要说明的是,我采用的是python2.7,直接上代码: #k-means算法的实现#-*-coding:utf-8 -*-fromnumpyimport*frommathimportsqrtimportsys sys.path.append("C:/Users/Administrator/Des...
K-Means均值聚类分析是一种无监督学习算法,用于将数据集分成k个簇(cluster),其中每个簇的成员在某种意义上是相似的。算法的目标是找到质心(centroid),使得每个点到其最近质心的距离之和最小。通俗讲法就是:给定一组数据,如何对这些数据进行分类,分几类是最恰当的。以下是进行k均值聚类分析的一般步骤:K-...
K均值聚类 (K-Means) K均值聚类是机器学习中最受欢迎和最广泛使用的聚类算法之一。它是无监督学习的代表,典型地用于市场细分、图像分割、社交网络分析等。由于其简洁性和效率,K均值已经成为初学者和研究者首选的工具,尤其是当面对大规模数据集时。 1.算法解读 ...
K-means(k-均值,也记为kmeans)是聚类算法中的一种,由于其原理简单,可解释强,实现方便,收敛速度快,在数据挖掘、数据分析、异常检测、模式识别、金融风控、数据科学、智能营销和数据运营等领域有着广泛的应用。 本文尝试梳理K-means聚类算法的基础知识体系: ...
k-means算法,也被称为k-平均或k-均值,是一种得到最广泛使用的聚类算法.它是将各个聚类子集内的所有数据样本的均值作为该聚类的代表点,算法的主要思想是通过迭代过程把数据集划分为不同的类别,使得评价聚类性能的准如此函数达到最优,从而使生成的每个聚类内紧凑,类间独立.这一算法不适合处理离散型属性,但是对于连续...
K-Means算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从而发现给定数据集中的K个类,且每个类的中心是根据类中所有数值的均值得到的,每个类的中心用聚类中心来描述。对于给定的一个(包含n个一维以及一维以上的数据点的)数据集X以及要得到的类别数量K,选取欧式距离作为相似度指标,聚类目标实施的个类的聚类...
本文介绍了K均值聚类算法(K-Means Clustering Algorithm,以下简称K-Means)相关内容。 简介 K-Means算法是一种迭代求解的聚类分析算法。该算法原理为:先将数据分为K组,随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,将每一个对象分配给距离它最近的聚类中心, 聚类中心以及分配给它们...