四、K-means聚类算法的优缺点及改进方法 优点 简单易懂:K-means聚类算法的原理简单,易于理解和实现。 计算速度快:该算法的计算效率较高,适用于大数据集的聚类分析。 可扩展性好:随着数据规模的扩大,K-means聚类算法仍然能够保持较好的性能。 局限性 需要预先设定聚类数目K:K值的选择对聚类结果有很大影响,但往往很...
1 简介 对图像进行颜色区域分割.将图像转换到CIE Lab颜色空间,用K均值聚类分析算法对描述颜色的a和b通道进行聚类分析;通过提取各个颜色区域独立成为单色的新图像,对图像进行分割处理.实验结果表明,在CIE Lab空间使用K—means聚类算法可以有效地分割彩色纺织品图像的颜色区域. 2 完整代码 clear all; close all; clc;...
function[mu,mask]=kmeans(ima,k) %功能:运用k-means算法对图像进行分割 %输入:ima-输入的灰度图像k-分类数 %输出:mu-均值类向量mask-分类后的图像 ima=double(ima); copy=ima; ima=ima(:); mi=min(ima); ima=ima-mi+1; s=length(ima); %计算图像灰度直方图 m=max(ima)+1; h=zeros(1,m); ...
attempts表示重复试验kmeans算法的次数,算法返回产生最佳紧凑性的标签 flags表示初始中心的选择,两种方法是...
1 Kmeans聚类算法基本原理 K-Means算法的思想很简单,对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大。 以彩色图像为例:基于彩色图像的RGB三通道为xyz轴建立空间直角坐标系,那么一副图像上的每个像素点与该空间直角坐标系建立了一 一映射...
attempts表示重复试验kmeans算法的次数,算法返回产生最佳紧凑性的标签 flags表示初始中心的选择,两种方法是cv2.KMEANS_PP_CENTERS ;和cv2.KMEANS_RANDOM_CENTERS centers表示集群中心的输出矩阵,每个集群中心为一行数据 下面使用该方法对灰度图像颜色进行分割处理,需要注意,在进行K-Means聚类操作之前,需要将RGB像素点转换为...
flags表示初始中心的选择,两种方法是cv2.KMEANS_PP_CENTERS ;和cv2.KMEANS_RANDOM_CENTERS centers表示集群中心的输出矩阵,每个集群中心为一行数据 下面使用该方法对灰度图像颜色进行分割处理,需要注意,在进行K-Means聚类操作之前,需要将RGB像素点转换为一维的数组,再将各形式的颜色聚集在一起,形成最终的颜色分割。
通过K-means算法,并用matlab程序来实现,将给定了7幅遥感图像通过处理,分成水域、居民区和其他三类区域。并用RGB彩色进行标记划分,这样看起来更易识别。 上述的K-means算法是在类别数k给定的情况下进行的。当类别数未知的情况下,在使用k-均值算法时,可以假设类别数是逐步增加的。例如,对k=1,k=2,k=3,…,分别...
传统的K-means在聚类算法在进行图像分割处理时,由于其算法本身的一些缺陷,使得图像颜色像素在进行聚类时会出现比较高误分类率,为了降低这一比率本文将一种改进的K-means聚类方法应用于图像分割研究中,取得明显的效果。根据我的了解在使用K-means算法时会用到Python语言,Python提供了高效的高级数据结构,还能简单有效地...
[ Step3 ] 加载K-means聚类算法 [ Step4 ] 对像素点进行聚类并输出 PIL包: 因为本实验涉及图像的加载和创建,因此需要使用到 PIL 包。 Step1: 建立工程并导入sklearn包: 创建Kmeans.py文件 导入sklearn相关包 importnumpyasnpfromPILimportImage#加载PIL包,用于加载创建图片fromsklearn.clusterimportKMeans#加载...