中心点的距离34centroids =createCent(dataSet, k)35clusterChanged = True#用来判断聚类是否已经收敛36whileclusterChanged:37clusterChanged =False;38foriinrange(m):#把每一个数据点划分到离它最近的中心点39minDist = inf; minIndex = -1;40forjinrange(k):41distJI =distMeans(centroids[j,:], dataSet[...
54 myCentroids,clustAssing = kMeans(datMat,4) 55 print myCentroids 56 print clustAssing 运行结果: 6、K-means算法补充 K-means算法的缺点及改进方法 (1)k值的选择是用户指定的,不同的k得到的结果会有挺大的不同,如下图所示,左边是k=3的结果,这个就太稀疏了,蓝色的那个簇其实是可以再划分成两个簇的...
def kmeans(data, k, cent): ''' kmeans算法求解聚类中心 :param data: 训练数据 :param k: 聚类中心的个数 :param cent: 随机初始化的聚类中心 :return: 返回训练完成的聚类中心和每个样本所属的类别 ''' m, n = np.shape(data) # m:样本的个数;n:特征的维度 subCenter = np.mat(np.zeros((...
K-means聚类算法思想可以看它设计诞生的伪代码看出: 我们发现这是一种迭代求解的聚类分析算法,其步骤是,预将数据分为K组,则随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。每分配一个样本,聚类...
给出python代码 importnumpyasnpimportrandomimportmatplotlib.pyplotaspltdefdistance(point1,point2):# 计算距离(欧几里得距离)returnnp.sqrt(np.sum((point1-point2)**2))defk_means(data,k,max_iter=10000):centers={}# 初始聚类中心# 初始化,随机选k个样本作为初始聚类中心。 random.sample(): 随机不重复...
以上代码将生成一个包含300个样本点的二维数据集,使用K-Means算法将其聚成4个簇,并通过散点图可视化聚类结果。聚类中心以红色标记显示。
kmeans聚类算法python代码kmeans 聚类算法 python 代码 K-means 聚类算法是一种常用的聚类分析方法,可以将数据集分成 K 个不 同的簇,使得簇内的数据点尽可能相似,簇间的数据点尽可能不同。以下是一个 使用Python 和 scikit-learn 库实现 K-means 聚类算法的示例代码: from sklearn.cluster import KMeans ...
kmeans聚类算法代码python画三维图 kmeans聚类 python 概念 聚类分析:是按照个体的特征将它们分类,让同一个类别内的个体之间具有较高的相似度,不同类别之间具有较大差异性 无分类目标变量(Y)——无监督学习 K-Means划分法、DBSCAN密度法、层次聚类法 1、导入数据...
1.Kmeans相关基础知识 2.两种代码方式实现算法模型(自己手写模型代码+用sklearn包实现) from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all" import numpy as np import pandas as pd import matplotlib as mpl ...
K-means算法是一种 无监督学习 方法,是最普及的聚类算法,算法使用 一个没有标签 的数据集,然后将数据聚类成不同的组。 K-means算法具有一个迭代过程,在这个过程中,数据集被分组成若干个预定义的不重叠的聚类或子组,使簇的内部点尽可能相似,同时试图保持簇在不同的空间,它将数据点分配给簇,以便簇的质心和...