一种常见的优化方法是采用最大距离法,如:首先选取数据集中距离最大的两个点作为初始聚类中心,将剩余数据对象依据到聚类中心点距离的远近分配到相应的簇中,并更新聚类中心,然后继续寻找与聚类中心距离最远的点作为下一个中心点…… 与此类似地还有K-Means++,它是传统K-Means的改良版,同样是基于最大距离,这里结合...
06、建立KMeans聚类模型 # 通过平均轮廓系数检验得到最佳KMeans聚类模型 score_list = list() # 用来存储每个K下模型的平局轮廓系数 silhouette_int = -1 # 初始化的平均轮廓系数阀值 for n_clusters in range(2, 8): # 遍历从2到5几个有限组 model_kmeans = KMeans(n_clusters=n_clusters) # 建立聚类...
在本文中,188个国家基于这19个社会经济指标聚集在一起,使用Python实现的蒙特卡罗K-Means聚类算法。通过将类似国家分组在一起并对其进行概括,聚类可以减少发现有吸引力投资机会所需的工作量 在讨论聚类国家和得出结论的结果之前,本文详细介绍了距离度量,聚类质量测量,聚类算法,K-Means聚类算法。 聚类理论 - 相似与距离的...
分区聚类算法的两个主要类别是 基于质心的聚类 和 基于密度的聚类。本文重点介绍基于质心的聚类; 特别是流行的K-means聚类算法。 聚类理论 - K-Means聚类算法 K-Means聚类算法是一种基于质心的分区聚类算法。K均值聚类算法包括三个步骤(初始化,分配和更新)。重复这些步骤,直到聚类已经收敛或已经超过迭代次数。 初始...
K均值聚类算法的基本思想是让簇内的样本点更“紧密”一些,也就是说,让每个样本点到本簇中心的距离更近一些。 常采用该距离的平方之和作为“紧密”程度的度量标准,因此,使每个样本点到本簇中心的距离的平方和尽量小是k-means算法的优化目标。每个样本点到本簇中心的距离的平方和也称为误差平方和(Sum of Squared...
通过手肘图法进行确定K值,手肘图如下:通过手肘图上判断,肘部数字大概是3或4,我们选择4作为聚类个数。2)建立聚类模型,模型参数如下:其它参数根据具体数据,具体设置。3)聚类算法结果输出 从上述表格可以看出,分群1占比34%,分群2占比25%,分群3占比10%,分群4占比31%。6.聚类可视化 1) 客户聚类结果图 通...
scikit 在通过图片的作者共同授权下,嵌入了几个样本 JPG图片,方便用户进行算法测试。本示例使用名为china.jpg的图片,经统计其中共有96615种不同的色彩; 要求用更少的色彩来展示这张图片,从而实现类似图像压缩的目的,比如只用64种颜色; 使用K-means聚类方法,将原来的96615种色彩聚合成64个类,然后使用新的64个色彩...
Kmeans聚类算法的思路通俗易懂,通过不断计算各样本点与簇中心的距离,直到收敛为止,具体步骤如下: 从数据中随机挑选k个样本点作为原始的簇中心 计算剩余样本与簇中心的距离,并把各样本标记为离k个簇中心最近的类别 重复计算各簇中样本点的均值,并以均值作为新的k个簇中心 ...
5.聚类模型 1)确定K值 通过手肘图法进行确定K值,手肘图如下: 通过手肘图上判断,肘部数字大概是3或4,我们选择4作为聚类个数。 2)建立聚类模型,模型参数如下: 编号 参数 1 n_clusters=4 2 init='k-means++' 其它参数根据具体数据,具体设置。 3)聚类算法结果输出 ...
1.K-means聚类原理 K-means聚类就是给定一组数据,以及一个k值,然后把这些数据分为k个类别的算法。其中k是事先需要给定的参数。每一个簇(类别)通过这个簇的中心(质心)进行描述。大概就是下面这样子: K-means算法是聚类算法中较为简单的一种,原理简单,易于实现。其原理大致是:首先给定k个中心(质心),然后将数据...