plt.rcParams['font.sans-serif'] = ['SimHei'] #使折线图显示中文 plt.plot(K,meanDispersions,'bx-') plt.xlabel('k') plt.ylabel('平均离差') plt.title('用肘部方法选择K值') plt.show() 三、实例分析(对某网站500家饭店价格及评论进行聚类) import numpy as np from sklearn.cluster import K...
如果变量比较多比如 10 个左右,变量间的相关性又比较高,就应该做个因子分析或者稀疏主成分分析,因为 K-Means 要求不同维度的变量相关性尽量低。(本系列的推文:原理+代码|Python基于主成分分析的客户信贷评级实战)那如果数据右偏严重,K-Means 聚类会出现什么情况?如果不经过任何处理,则聚类出来的结果便是如...
K-means是一种经典的聚类算法,通过将数据划分为k个簇来实现聚类。下面是一个Python实现的K-means算法代码示例: ```python import numpy as np def kmeans(X, k, max_iters=100): #随机选择k个中心点 centers = X[np.random.choice(range(len(X)), k, replace=False)] for _ in range(max_iters):...
kmeans=KMeans(n_clusters=4)kmeans.fit(X)# 计算轮廓系数 score=silhouette_score(X,kmeans.labels_)print(f'Silhouette Score: {score}')# 绘制聚类结果 plt.scatter(X[:,0],X[:,1],c=kmeans.labels_,cmap='viridis')plt.scatter(kmeans.cluster_centers_[:,0],kmeans.cluster_centers_[:,1],s...
K-means算法是集简单和经典于一身的基于距离的聚类算法 采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。 该算法认为类簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。 2、核心思想 通过迭代寻找k个类簇的一种划分方案,使得用这k个类簇的均值来代表相应各类样本时...
kmeans聚类 迭代时间远比层次聚类的要少,处理大数据,kmeans优势极为突出.。对博客数据进行聚类,实验测试了:层次聚类的列聚类(单词聚类)几乎要上1小时,而kmeans对列聚类只需要迭代4次!! 快速极多。如图:包含两个聚类的kmean聚类过程:总思路:将所有要聚类的博客,
kmeans聚类算法python代码kmeans 聚类算法 python 代码 K-means 聚类算法是一种常用的聚类分析方法,可以将数据集分成 K 个不 同的簇,使得簇内的数据点尽可能相似,簇间的数据点尽可能不同。以下是一个 使用Python 和 scikit-learn 库实现 K-means 聚类算法的示例代码: from sklearn.cluster import KMeans ...
构建K-Means算法的代码如下: def kmeans(data, k, cent): ''' kmeans算法求解聚类中心 :param data: 训练数据 :param k: 聚类中心的个数 :param cent: 随机初始化的聚类中心 :return: 返回训练完成的聚类中心和每个样本所属的类别 ''' m, n = np.shape(data) # m:样本的个数;n:特征的维度 ...
以下是我的代码,包含注释、空行总共26行,有效代码16行。1import numpy as np 2 3defkmeans_xufive(ds, k): 4"""k-means聚类算法 5 6 k - 指定分簇数量 7 ds - ndarray(m, n),m个样本的数据集,每个样本n个属性值 8 """ 910 m, n = ds.shape # m:样本数量,n:每...
means聚类算法matlab程序代码clearclcx K-means聚类算法matlab程序代码 clear clc x=[0 0;1 0;0 1;1 1;2 1;1 2;3 2;6 6;7 6;8 6;6 7;7 7;8 7;9 7;7 8;8 8;9 8;8 9;9 9]; z=zeros(2,2); z1=zeros(2,2); z=x(1:2,1:2); % % 寻找聚类中心 while 1 count=zeros(2...