随着循环次数逐渐收敛,不难证第1步随机的初始质心对结果无影响,即使得K-means算法具有普遍适用性。 可以看出,第六次更新后聚类相同,数据收敛。 大家可以尝试修改初始质心,查看结果是否一致。 sklearn库调用 上面手动复现了K-means代码的实现,但其实sklearn库有相应的封装函数,本节介绍其调用。sklearn.cluster.KMeans...
800×600×1800×600×1是因为每个像素点需要用一个数来表示其归属的簇,K×3K×3是因为我们需要记录KK个中心点的RGB数值。所以经过K Means压缩后,我们只需要三分之一左右的数就可以表示图像。 下面的函数KMeansImage(d, n_colors)就可以用来生成n_colors个颜色构成的图像。 from sklearn.cluster import KMeans...
【图一】K-means 算法首先将所有坐标初始化为“K”集群中心。(K 值是一个输入变量,位置也可以作为输入变量。)【图二】每经过一次算法,每个点都会分配给其最近的集群中心。【图三】然后,集群中心会被更新为在该经过中分配给其的所有点的“中心”。这是通过重新计算集群中心作为各自集群中点的平均值来实现的。算法...
3 k-mean应用:RGB图像压缩 k-means压缩原理 这种压缩方法的本质是量化矢量(Vector Quaintization),通过 kmeans 聚类得到量化表,将每个像素用量化表中的矢量来表示,然后只要记录每个像素对应的索引值,这样原来使用 24bit 来表示一个像素,现在只需要存储记录索引值所需要的 6bit 就可了,因此实现了压缩图像 压缩测试 ...
51CTO博客已为您找到关于kmeans算法原理图的相关内容,包含IT学习相关文档代码介绍、相关教程视频课程,以及kmeans算法原理图问答内容。更多kmeans算法原理图相关解答可以来51CTO博客参与分享和学习,帮助广大IT技术人实现成长和进步。
使用K-means算法聚类时,可以利用肘部原理观察()折线图来选择k值。;迭代次数;兰德指数;轮廓系数;欧式距离
在使用 Kmeans 算法进行聚类时,可以利用肘部原理观察 _ 折线图来选择 k 值。A.迭代次数B.兰德指数C.轮廓系数D.欧式距离
kmeans特征提取原理,详细代码图解分析 - CSDN博客 http://blog.csdn.net/whiteinblue/article/details/27378513 原理部分主要来自大牛zouxy09和trnadomeet两个人的博客;后面的代码详细讲解为自己精心编写 一、概述 非监督学习的一般流程是:先从一组无标签数据中学习特征,然后用学习到的特征提取函数去提取有标签数据特...
k均值聚类算法(k-means clustering algorithm)是一种迭代求解的聚类分析算法,也就是将数据分成K个簇的算法,其中K是用户指定的。 比如将下图中数据分为3簇,不同颜色为1簇。 K-means算法的作用就是将数据划分成K个簇,每个簇高度相关,即离所在簇的质心是最近的。 下面将简介K-means算法原理步骤。
1. 原理简介 将目标图像中的点,对应到原图像中后,找到最相邻的整数坐标点的像素值,作为该点的像素值输出。 如上图所示,目标图像中的某点投影到原图像中的位置为点P,与P距离最近的点为Q11,此时易知,f(P)=f(Q11)。 2. 例子说明 如图所示: 将一幅3*3图像放大到4*4,用f(x , y)表示原图像,h(x ,...