K-SVD:一种用于稀疏表示的超完备字典设计算法 论文原文地址:sites.fas.harvard.edu/~ 萌新项目地址:github.com/GitHberChen/ 本文结构: 一、原论文结构介绍 二、原论文翻译 三、预备知识介绍 四、论文核心概要以及K-SVD算法详解 五、K-SVD算法代码实现 一、论文结构: 概述 1、引入 A、信号的稀疏表示 B、字典...
IV. THE K-SVD ALGORITHM K-SVD算法 In this section, we introduce the K-SVD algorithm for training of dictionaries. This algorithm is flexible and works in conjunction with any pursuit algorithm. It i…
K-SVD算法是常用的字典生成算法,另一种是MOD算法,后期可以学习。 六、参考文献
K-SVD算法是K-means的一种推广,具有灵活性可以联合不同的追踪算法。当一个信号用一个原子来表示时,使用gain-shape VD(矢量量化)来进行字典训练,当原子的系数要求为标准形式时,此时的K-SVD相当于K-means。由于稀疏编码的高效性以及Gauss-Seidel-like加速了字典的更新,K-SVD算法效率高。该算法的步骤之间是相关的。
K-SVD是一种迭代算法,是K-means算法的扩展,一般是用来在稀疏表示问题中的字典训练方面。这里的“字典”是一个过完备的矩阵,由其,使得一个信号向量可以表示成字典中原子(字典的列向量)的稀疏线性组合。 K-SVD和K-means方法本质上都属于一种压缩的思想,都主要包含以下两个步骤:1)稀疏编码 2)字典更新 在K...
K-SVD是一种经典的字典训练算法,依据误差最小原则,对误差项进行SVD分解,选择使误差最小的分解项作为更新的字典原子和对应的原子系数,经过不断的迭代从而得到优化的解。 具体可以看看参考文献; 总结一句话:当更新字典中的一个原子时,把该原子对误差的贡献清零,然后对剩余的误差矩阵进行SVD分解(原因是SVD分解可以把最...
K-SVD算法在稀疏表示技术上取得了巨大成功,但遇到了字典原子未充分利用的问题,而稀疏贝叶斯字典学习(Sparse Bayesian Dictionary Learning,SBDL)算法存在稀疏表示后信号原子不稀疏和不收敛的缺点。广义贝叶斯字典学习(Generalized Bayesian Dictionary Learning,GBDL)K-SVD算法提供了一种新型稀疏表示系数更新模式,使得过完备...
针对在线采集时超声波检测信号中存在大量噪声,降低了材料内部缺陷诊断准确性的问题,提出了一种基于广义K+奇异值分解算法(K-SVD)和正交匹配追踪算法(OMP)相结合的超声回波信号去噪算法.该算法利用K-SVD算法将Gabor字典训练成能够最有效反映信号结构特征的超完备字典,然后基于训练完成的超完备字典,用OMP算法把一定数量的...