聚类分析就是以相似性为基础,在一个聚类中的模式之间比不在同一个聚类中的模式之间具有更多的相似性。对数据集进行聚类划分,属于无监督学习。 2、K-Means: K-Means算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从而发现给定数据集中的K个类,且每个类的中心是根据类中所有数值的均值得到的,每个类的中...
或者各隐含类别的方差不同,则聚类效果不佳;采用迭代方法,得到的结果只是局部最优;对噪音和异常点比较的敏感。结论 K均值(K-Means)聚类算法原理简单,可解释强,实现方便,可广泛应用在数据挖掘、聚类分析、数据聚类、模式识别、金融风控、数据科学、智能营销和数据运营等多个领域,有着广泛的应用前景。
K-Means常用欧氏距离作为距离度量,但在不同的应用场景中,可以考虑曼哈顿距离、余弦相似度等其他度量方法,以更好地适应数据特性。 5. K-Means算法的实现 5.1 使用Python及scikit-learn实现K-Means Python 的 scikit-learn 库提供了 K-Means 算法的高效实现。以下是使用 scikit-learn 实现 K-Means 的基本代码示例: ...
k-means算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从而发现给定数据集中的K个类,且每个类的中心是根据类中所有值的均值得到,每个类用聚类中心来描述。对于给定的一个包含n个d维数据点的数据集X以及要分得的类别K,选取欧式距离作为相似度指标,聚类目标是使得各类的聚类平方和最小,即最小化: ...
k-means聚类 1.k-means聚类 聚类是一个将数据集中在某些方面相似的数据成员进行分类组织的过程,聚类就是一种发现这种内在结构的技术,聚类是建立在无类标记的数据上,是一种非监督的学习算法 k均值聚类算法(k-means clustering algorithm)是最著名的划分聚类算法,是一种迭代求解的聚类分析算法。由于简洁和效率使得他...
聚类(cluster)算法在机器学习中有若干种,本文讲的是K-means聚类算法,也叫K均值聚类算法。K是指将数据信息观察的对象聚成几类,means是指平均距离(在2.5.3中具体介绍)。 二、算法原理 为了易于理解,本文采用二维特征空间作为演示 1、何为特征 指观察某些事物或现象,能够被区分、记录和保存的信息(数据),例如:人的...
当k小于真实聚类数时,由于k的增大会大幅增加每个簇的聚合程度,故Inertia的下降幅度会很大,而当k到达真实聚类数时,再增加k所得到的聚合程度回报会迅速变小,所以Inertia的下降幅度会骤减,然后随着k值的继续增大而趋于平缓,也就是说Inertia和k的关系图是一个手肘的形状,而这个肘部对应的k值就是数据的真实聚类数。例如...
k均值聚类(k-means clustering)是2018年全国科学技术名词审定委员会公布的生物物理学名词。定义 一种动态聚类方法。在原始图像集合(N个图像)中随机选择k个原始图像作为k个类,逐个分析剩余图像,计算该图像与k个类之间的距离,将该图像归入与之最邻近的类,重新计算该类的类平均图,依次类推直至分析完剩余N-k个...
一K-均值聚类(K-means)概述 1. 聚类 “类”指的是具有相似性的集合。聚类是指将数据集划分为若干类,使得类内之间的数据最为相似,各类之间的数据相似度差别尽可能大。聚类分析就是以相似性为基础,对数据集进行聚类划分,属于无监督学习。 2. 无监督学习和监督学习 ...