k均值聚类(k-means clustering)是2018年全国科学技术名词审定委员会公布的生物物理学名词。定义 一种动态聚类方法。在原始图像集合(N个图像)中随机选择k个原始图像作为k个类,逐个分析剩余图像,计算该图像与k个类之间的距离,将该图像归入与之最邻近的类,重新计算该类的类平均图,依次类推直至分析完剩余N-k个...
K-Means 容易陷入局部最优解,这是因为算法的结果受初始聚类中心的选择影响。解决方案包括多次运行算法,每次用不同的初始聚类中心,或使用全局优化算法。 处理不同大小和密度的集群 K-Means 假设所有集群在形状和大小上都是相似的。对于不同大小或密度的集群,算法可能无法有效地划分数据。在这些情况下,可能需要考虑使用...
在K-Means中,在一个固定的簇数K条件下,最小化总体平方和来求解最佳质心,并基于质心的存在去进行聚类。两个过程十分相似,并且整体距离平方和的最小值其实可以使用梯度下降来求解。大家可以发现, Inertia是基于欧几里得距离的计算公式得来的。实际上,也可以使用其他距离,每个距离都有自己对应的Inertia。在过去的经...
K-Means算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从而发现给定数据集中的K个类,且每个类的中心是根据类中所有数值的均值得到的,每个类的中心用聚类中心来描述。对于给定的一个(包含n个一维以及一维以上的数据点的)数据集X以及要得到的类别数量K,选取欧式距离作为相似度指标,聚类目标实施的个类的聚类...
K-means(k-均值,也记为kmeans)是聚类算法中的一种,由于其原理简单,可解释强,实现方便,收敛速度快,在数据挖掘、数据分析、异常检测、模式识别、金融风控、数据科学、智能营销和数据运营等领域有着广泛的应用。 本文尝试梳理K-means聚类算法的基础知识体系: ...
K-Means 是一种无监督的聚类算法,其目的是将 n 个数据点分为 k 个聚类。每个聚类都有一个质心,这些质心最小化了其内部数据点与质心之间的距离。 它能做什么 市场细分: 识别具有相似属性的潜在客户群体。 图像分析: 图像压缩和图像分割中的像素聚类。
K-均值聚类 (K-Means Clustering)是一种经典的无监督学习算法,用于将数据集分成K个不同的簇。其核心思想是将数据点根据距离的远近分配到不同的簇中,使得簇内的点尽可能相似,簇间的点尽可能不同。一、商业领域的多种应用场景 1. **客户细分**:在市场营销领域,K-均值聚类可以用于客户细分,将客户根据购买...
本文介绍了K均值聚类算法(K-Means Clustering Algorithm,以下简称K-Means)相关内容。 简介 K-Means算法是一种迭代求解的聚类分析算法。该算法原理为:先将数据分为K组,随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,将每一个对象分配给距离它最近的聚类中心, 聚类中心以及分配给它们...
K-Means算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从而发现给定数据集中的K个类,且每个类的中心是根据类中所有数值的均值得到的,每个类的中心用聚类中心来描述。对于给定的一个(包含n个一维以及一维以上的数据点的)数据集X以及要得到的类别数量K,选取欧式距离作为相似度指标,聚类目标实施的个类的聚类...