干货|机器学习:Python实现聚类算法之K-Means 1.简介 K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。 K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。 2. 算法大致流程为: 1)随机选取k...
步骤:分析 → 聚类分析 → K-Means → 选入数据 → 更多 → 模型设置 → 聚类簇数设置为4 → 超参数调优与绘图 → 绘制聚类图 → 确定 最终DMSAS的建模结果如下所示 Python 以下展示使用sklearn,并直接采用sklearn库自带的鸢尾花数据集对K-Means进行实现的案例,这里用到的类是sklearn.cluster.KMeans。 1....
算法的运行效果如下图所示,我们可以看到上面的结果经过了3次迭代之后k-means算法收敛: K-means算法进行到这里,我们似乎已经得出了聚类的质心,但是不要忘记了我们的算法采取的是随机初始化k个簇的质心的方法,这样的话聚类效果可能会陷入局部最优解的情况,这样虽然有效果,但不如全局最优解的效果好。因此接下来的二分...
df = pd.DataFrame(data)# 定义K-means模型,其中k=2kmeans = KMeans(n_clusters=2, random_state=0)# 对数据进行拟合并获取聚类标签labels = kmeans.fit_predict(df[['X','Y']])# 将聚类标签添加到数据框中df['Cluster'] = labels# 打印带有聚类标签的数据框print(df)# 可视化结果plt.scatter(df[...
K-means聚类算法 0.聚类算法算法简介 聚类算法算是机器学习中最为常见的一类算法,在无监督学习中,可以说聚类算法有着举足轻重的地位。 提到无监督学习,不同于前面介绍的有监督学习,无监督学习的数据没有对应的数据标签,我们只能从输入X中去进行一些知识发现或者预处理。
然后,介绍K-means的Python实现,K-means的Sklearn实现和用户聚类分群等聚类具体应用; 最后,对K-means进行总结,指出K-means的优缺点,K-means的改进办及聚类和分类的区别。 本文目录如下: 1. K-means基础 1.1. 聚类 1.2. 聚类分类 1.3. 基于划分的聚类算法 ...
kmeans算法简单例题python kmeans算法简单例题讲解 算法原理 KMeans算法是典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。
一文读懂层次聚类(Python代码) 本篇和大家介绍下层次聚类,先通过一个简单的例子介绍它的基本理论,然后再用一个实战案例 Python 代码实现聚类效果。 首先要说,聚类属于机器学习的无监督学习,而且也分很多种方法,比如大家熟知的有 K-means 。层次聚类也是聚类中的一种,也很常用。下面我先简单回顾一下 K-means 的...
「机器学习项目实战」Python实现聚类(Kmeans)分析客户分组 说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需项目,可关注留言。想了解更多精彩内容,快来关注张陈亚 1.问题定义 在日常银行、电商等公司中,随着时间的推移,都会积累一些客户的数据。在当前的大数据时代、人工智能时代,数据就是无...
一、scikit-learn中的Kmeans介绍 scikit-learn 是一个基于Python的Machine Learning模块,里面给出了很多Machine Learning相关的算法实现,其中就包括K-Means算法。 官网scikit-learn案例地址:http://scikit-learn.org/stable/modules/clustering.html#k-means 部分来自:scikit-learn 源码解读之Kmeans——简单算法复杂的说...