K-Means算法的不足,都是由初始值引起的: 1)初始分类数目k值很难估计,不确定应该分成多少类才最合适(ISODATA算法通过类的自动合并和分裂,得到较为合理的类型数目k。这里不讲这个算法) 2)不同的随机种子会得到完全不同的结果(K-Means++算法可以用来解决这个问题,其可以有效地选择初始点) 算法流程如下: 1)在数据...
}# 创建DataFramedf = pd.DataFrame(data)# 提取用于聚类的特征X = df[['X','Y']]# 注意修正这里的语法错误# 初始化KMeans模型列表,并设定k的范围range_n_clusters = [1,2,3,4,5,6,7,8]# 扩大了k的范围inertia_scores = []# 对每个k值进行聚类并计算惯性指标forn_clustersinrange_n_clusters:# ...
K-means算法进行到这里,我们似乎已经得出了聚类的质心,但是不要忘记了我们的算法采取的是随机初始化k个簇的质心的方法,这样的话聚类效果可能会陷入局部最优解的情况,这样虽然有效果,但不如全局最优解的效果好。因此接下来的二分K--means算法就是针对这一问题所采取的相应的后处理,使算法跳出局部最优解,达到全局...
中心点的距离34centroids =createCent(dataSet, k)35clusterChanged = True#用来判断聚类是否已经收敛36whileclusterChanged:37clusterChanged =False;38foriinrange(m):#把每一个数据点划分到离它最近的中心点39minDist = inf; minIndex = -1;40forjinrange(k):41distJI =distMeans(centroids[j,:], dataSet...
一、scikit-learn中的Kmeans介绍 scikit-learn 是一个基于Python的Machine Learning模块,里面给出了很多Machine Learning相关的算法实现,其中就包括K-Means算法。 官网scikit-learn案例地址:http://scikit-learn.org/stable/modules/clustering.html#k-means 部分来自:scikit-learn 源码解读之Kmeans——简单算法复杂的说...
2. 引用Python库将样本分为两类(k=2),并绘制散点图: #只需将X修改即可进行其他聚类分析 import matplotlib.pyplot as plt from sklearn.cluster import KMeans kemans=KMeans(n_clusters=2) result=kemans.fit_predict(X) #训练及预测 print(result) #分类结果 ...
K-means聚类是一种无监督学习算法,它将未标记的数据集分组到不同的聚类中。“K”是指数据集分组到的预定义聚类的数量。 我们将使用 Python 和 NumPy 实现该算法,以更清楚地理解这些概念。 鉴于: K = 簇数 X = 形状 (m, n) 的训练数据:m 个样本和 n 个特征 ...
系数检验得到最佳KMeans聚类模型 score_list = list() # 用来存储每个K下模型的平局轮廓系数 silhouette_int = -1 # 初始化的平均轮廓系数阀值 for n_clusters in range(2, 8): # 遍历从2到5几个有限组 model_kmeans = KMeans(n_clusters=n_clusters) # 建立聚类模型对象 labels_tmp = model_kmeans....
原理+代码|Python实现 kmeans 聚类分析 来源:早起Python 作者:萝卜 1.前言 聚类分析是研究分类问题的分析方法,是洞察用户偏好和做用户画像的利器之一,也可作为其他数据分析任务的前置探索(如EDA)。上文的层次聚类算法在数据挖掘中其实并不常用,因为只是适用于小数据。所以我们引出了 K-Means 聚类法,这种方法...
利用python 实现 K-Means聚类 一.k-means聚类算法简介 (一)k-means聚类算法的概念 k-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。