接着,介绍K-means原理、K-means算法、K-means特征工程(类别特征、大数值特征)、K-means评估(SSE、轮廓系数),重点阐述了如何确定K值,如何选取初始中心点,如何处理空簇; 然后,介绍K-means的Python实现,K-means的Sklearn实现和用户聚类分群等聚类具体应用; 最后,对K-means进行总结,指出K-means的优缺点,K-means的改...
2. 引用Python库将样本分为两类(k=2),并绘制散点图: #只需将X修改即可进行其他聚类分析 import matplotlib.pyplot as plt from sklearn.cluster import KMeans kemans=KMeans(n_clusters=2) result=kemans.fit_predict(X) #训练及预测 print(result) #分类结果 plt.rcParams['font.family'] = ['sans-s...
df = pd.DataFrame(data)# 定义K-means模型,其中k=2kmeans = KMeans(n_clusters=2, random_state=0)# 对数据进行拟合并获取聚类标签labels = kmeans.fit_predict(df[['X','Y']])# 将聚类标签添加到数据框中df['Cluster'] = labels# 打印带有聚类标签的数据框print(df)# 可视化结果plt.scatter(df[...
tol:容忍度,即kmeans运行准则收敛的条件 precompute_distances:是否需要提前计算距离,这个参数会在空间和时间之间做权衡,如果是True会把整个距离矩阵都放到内存中,auto 会默认在数据样本大于featurs*samples 的数量大于12e6的时候False,False时核心实现的方法是利用Cpython 来实现的 verbose:冗长模式(不太懂是啥意思,反...
干货|机器学习:Python实现聚类算法之K-Means 1.简介 K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。 K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。
1 Kmeans模型理论 1.1 K-均值算法(K-means)算法概述 K-means算法是一种无监督学习方法,是最普及的聚类算法,算法使用一个没有标签的数据集,然后将数据聚类成不同的组。 K-means算法具有一个迭代过程,在这个过程中,数据集被分组成若干个预定义的不重叠的聚类或子组,使簇的内部点尽可能相似,同时试图保持簇在不...
python之kmeans数据聚类算法 一 Kmeans原理 kmeans是属于无监督学习的数据聚类算法,根据点与点之间的距离推测每个点属于哪个中心,常用计算距离的方式有:余弦距离、欧式距离、曼哈顿距离等,本文以欧式距离为例。图1假设每个点的维度是n,即每个点有n个特征维度,计算这些点数据到数据中心A、B、C的距离,从而将每个...
K-Means 聚类 K-means聚类是一种无监督学习算法,它将未标记的数据集分组到不同的聚类中。“K”是指数据集分组到的预定义聚类的数量。 我们将使用 Python 和 NumPy 实现该算法,以更清楚地理解这些概念。 鉴于: K = 簇数 X = 形状 (m, n) 的训练数据:m 个样本和 n 个特征 ...
26 cores[i] = np.mean(items, axis=0) # 以子样本集的均值作为当前质心的位置这是网上比较流行的 k-means 均值聚类算法代码,包含注释、空行总共57行,有效代码37行。1import numpy as np 2 3# 加载数据 4def loadDataSet(fileName): 5 data = np.loadtxt(fileName,delimiter='\\t') ...
1import numpy as np 2 3defkmeans_xufive(ds, k): 4"""k-means聚类算法 5 6 k - 指定分簇数量 7 ds - ndarray(m, n),m个样本的数据集,每个样本n个属性值 8 """ 910 m, n = ds.shape # m:样本数量,n:每个样本的属性值个数11 result = np.empty(m, dtype=...