干货|机器学习:Python实现聚类算法之K-Means 1.简介 K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。 K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。 2. 算法大致流程为: 1)随机选取k个
首先,随机确定k个初始点的质心;然后将数据集中的每一个点分配到一个簇中,即为每一个点找到距其最近的质心,并将其分配给该质心所对应的簇;该步完成后,每一个簇的质心更新为该簇所有点的平均值。具体算法表示如下:下图展示了K-means聚类算法的支持函数在Python环境下的具体表示: 在上述算法清单中,包含了几个K...
K-means聚类思想及其Python实现 聚类就是将一个庞杂数据集中具有相似特征的数据自动归类到一起,称为一个簇,簇内的对象越相似,聚类的效果越好。“相似”这一概念,是利用距离标准来衡量的,我们通过计算对象与对象之间的距离远近来判断它们是否属于同一类别,即是否是同一个簇。聚类是一种无监督的学习(Unsupervised Learni...
showcluster函数中,利用matplotlib库的plot函数将不同类别数据以不同颜色展现出来。 完整Python代码如下: importnumpy as npimportmatplotlib.pyplot as plt#子函数:Initialize center函数通过使用numpy库的zeros函数和random.uniform函数,#随机选取了k个数据做聚类中心, 并将结果存放在Numpy的Array对象centers中definit...
原理+代码|Python实现 kmeans 聚类分析 来源:早起Python 作者:萝卜 1.前言 聚类分析是研究分类问题的分析方法,是洞察用户偏好和做用户画像的利器之一,也可作为其他数据分析任务的前置探索(如EDA)。上文的层次聚类算法在数据挖掘中其实并不常用,因为只是适用于小数据。所以我们引出了 K-Means 聚类法,这种方法...
聚类本无标准,是将数据分成多个组探讨是否有联系 分类依据标准把现有数据划分成组 2、聚类的算法 3、用Python进行Kmeans的步骤 4、如何确定k值/如何评估聚类效果 KMeans算法使用欧式距离去度量样本到聚类中心的距离,追求“簇内差异小,簇外差异大”。 轮廓系数:可以衡量类与类和同一类内部之间的差别,介于[-1,1]之...
在Python的sklearn库中,KMeans算法被封装在KMeans类中。使用KMeans进行聚类分析时,需要关注以下几个关键参数: n_clusters:整数,指定要形成的聚类数目。 init:字符串或ndarray,指定初始质心。默认为’k-means++’,表示使用k-means++算法进行初始化。 n_init:整数,指定用不同的质心初始化方法运行算法的次数。默认为...
1.问题定义 在日常银行、电商等公司中,随着时间的推移,都会积累一些客户的数据。在当前的大数据时代、人工智能时代,数据就是无比的财富。并且消费者需求显现出日益差异化和个性化的趋势。随着我国市场化程度的逐步深入,以及信息技术的不断渗透,对大数据的分析已是必然趋势。本案例就是使用机器学习聚类算法对客户进行...
来源:早起Python 作者:萝卜 1.前言 聚类分析是研究分类问题的分析方法,是洞察用户偏好和做用户画像的利器之一,也可作为其他数据分析任务的前置探索(如EDA)。上文的层次聚类算法在数据挖掘中其实并不常用,因为只是适用于小数据。所以我们引出了 K-Means 聚类法,这种方法计算量比较小。能够理解 K-Means 的基本原理...
Python模拟手写 python手写kmeans,KMeans算法是一种无监督学习,它会将相似的对象归到同一类中。其基本思想是:1.随机计算k个类中心作为起始点。2.将数据点分配到理其最近的类中心。3.移动类中心。4.重复2,3直至类中心不再改变或者达到限定迭代次数。具体的实现如下:fromn