由于图像看起来像手肘,因此这种选取最佳K值的方式被称为“手肘法”。 k-means的实现 首先编写一个计算“有序属性”距离的函数,也可以使用matlab中自带的pdist或者是norm函数,推荐使用norm。 function dist = cal_dist(X,p) %计算两个样本点之间的闵可夫斯基距离,当...
K-means是一种典型的聚类算法,它是基于距离的,是一种无监督的机器学习算法。 K-means需要提前设置聚类数量,我们称之为簇,还要为之设置初始质心。 缺点: 1、循环计算点到质心的距离,复杂度较高。 2、对噪声不敏感,即使是噪声也会被聚类。 3、质心数量及初始位置的选定对结果有一定的影响。 二、计算 K-means...
聚类算法适合数据类型算法效率发现的聚类形状能否处理大数据集是否受初始聚类中心影响对异常数据敏感性对输入数据顺序敏感性K-MEANS数值型较高凸形或球形能是非常敏感不敏感K-MEDOIDS数值型一般凸形或球形否否不敏感不敏感BIRCH数值型高凸形或球形能否不敏感不太敏感CURE数值型较高任意形状能否不敏感不太敏感DBSCAN数值型...
使用matlab完成高维数据的聚类与可视化 [idx,Centers]=kmeans(qy,3) [COEFF,SCORE,latent] = pca(qy); SCORE = SCORE(:,1:30); mappedX = tsne(SCORE,'Algorithm','exact','NumDimensions',3); c=zeros(211,3); for i =1:211c(i,idx(i)) =1; end scatter3(mappedX(:,1),mappedX(:,2),...
k-means简介 k-means算法也称k均值算法,是一种常用的聚类算法。聚类算法是研究最多、应用最广的一种无监督学习算法。 聚类试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集称为一个“簇”。通过这样的划分,每个簇里的样本可能具有一些潜在的、共同的特质。
[Idx,C]=Kmeans(X,K) 对矩阵X进行分类且为K类;假设X为m*n矩阵,n为特征数,m为样本数目,则输出参数Idx为m个整数,且属于1到K之间的数。 并且返回聚类中心C,C为k*n的矩阵。 [Idc,C,sumD]=Kmeans(X,K) 对矩阵X进行分类且为K类;假设X为m*n矩阵,n为特征数,m为样本数目,则输出参数Idx为m个整数,...
在MATLAB中应用K-MEANS算法 数据的预处理 本研究的数据是某高校学生的期末考试成绩,成绩表包括以下字段:x1为“电子商务”科目成绩,x2为“C语言概论”科目基础知识。其中,数据已经经过标准化和中心化的预处理: (1)补充缺失值。对退学、转学、休学、缺考造成的数据缺失采用平均值法,以该科目的平均分数填充。
常用的聚类算法有:K-MEANS、K-MEDOIDS、BIRCH、CURE、DBSCAN、STING。 主要聚类算法分类 聚类算法的性能比较 由表可得到以下结论:1)大部分常用聚类算法只适合处理数值型数据;2)若考虑算法效率、初始聚类中心影响性和对异常数据敏感性,其中BIRCH算法、CURE算法以及STING算法能得到较好的结果;3)CURE算法、DBSCAN算法以及ST...
matlab实现Kmens聚类算法matlab实现Kmeans聚类算法 matlab实现Kmeans聚类算法简介: Kmeans和应用于混合高斯模型的受限EM算法是一致的。高斯混合模型广泛用于数据挖掘、模式识别、机器学习、统计分析。Kmeans的迭代步骤可以看成E步和M步,E:固定参数类别中心向量重新标记样本,M:固定均值只考虑(估计)了均值,而没有估计类别...
本文首先阐明了聚类算法的基本概念,介绍了几种比较典型的聚类算法,然后重点阐述了K-均值算法的基本思想,对K-均值算法的优缺点做了分析,回顾了对K-均值改进方法的文献,最后在Matlab中应用了改进的K-均值算法对数据进行了分析。 常用的聚类算法 常用的聚类算法有:K-MEANS、K-MEDOIDS、BIRCH、CURE、DBSCAN、STING。 主...