解析 答案:K-means聚类算法的基本步骤如下: (1)随机选择K个数据点作为初始聚类中心。 (2)计算每个数据点到各个聚类中心的距离,将数据点分配到距离最近的聚类中心所在的类别。 (3)更新聚类中心:计算每个类别内所有数据点的均值,作为新的聚类中心。 (4)重复步骤2和3,直到聚类中心不再发生变化。
ylim#设置横轴的上下限值plt.xlim(-5, 20)#设置纵轴的上下限值plt.ylim(-5, 20)#plt.savefig('test_xx.png', dpi=200, bbox_inches='tight', transparent=False)plt.show()#调用kmeans聚类算法kms=KMeans(n_clusters=3)
1 K-Means算法引入 基于相似性度量,将相近的样本归为同一个子集,使得相同子集中各元素间差异性最小,而不同子集间的元素差异性最大[1],这就是(空间)聚类算法的本质。而K-Means正是这样一种算法的代表。 图1 二维空间聚类的例子 [1] 上个世纪50/60年代,K-Means聚类算法分别在几个不同的科学研究领域被独立...
1)mini batch:既然整个样本集合计算需要时间较长,那么通过抽样选取一部分样本进行聚类。 2)k-means++:原始K-means算法最开始随机选取数据集中K个点作为聚类中心,而K-means++按照如下的思想选取K个聚类中心:假设已经选取了n个初始聚类中心(0<n<K),则在选取第n+1个聚类中心时:距离当前n个聚类中心越远的点会有更...
1. 随机选取一个样本作为聚类中心 2. 计算每个样本点与该聚类中心的距离,选择距离最大的点作为聚类中心点 3. 重复上述步骤,直到选取K个中心点 在scikit-learn中,使用kmeans聚类的代码如下 代码语言:javascript 复制 >>>importmatplotlib.pyplotasplt>>>importnumpyasnp>>>from sklearn.clusterimportKMeans>>>from...
kmeans聚类算法的步骤: K-means聚类算法是一种非常经典的聚类分析算法,它的基本步骤如下: 1.随机选取K个点作为初始的聚类中心,这些点可以是数据集中的样本点,也可以是人为指定的点。 2.对任意一个样本,计算它到各个聚类中心的距离,然后将该样本归到距离最短的中心所在的类。 3.重新计算每个聚类的中心点位置,...
问答题:请简述K-means聚类算法的基本步骤。相关知识点: 试题来源: 解析 答案:K-means聚类算法的基本步骤包括:随机选择K个中心点,将每个数据点分配给最近的中心点,形成K个簇;计算每个簇的中心点;重复以上步骤,直到中心点不再变化或达到预设的迭代次数。
k均值聚类算法(k-means clustering algorithm)是一种迭代求解的聚类分析算法,也就是将数据分成K个簇的算法,其中K是用户指定的。 比如将下图中数据分为3簇,不同颜色为1簇。 K-means算法的作用就是将数据划分成K个簇,每个簇高度相关,即离所在簇的质心是最近的。 下面将简介K-means算法原理步骤。