问答题:请简述K-means聚类算法的基本原理和步骤。相关知识点: 试题来源: 解析 答案:K-means聚类算法是一种基于划分的聚类算法,通过迭代将数据划分为K个簇。它的基本原理是通过计算每个数据点到簇中心的距离来确定每个数据点的簇,并不断迭代更新簇中心和簇分配,直到满足收敛条件为止。
k-means算法是一种基础的聚类算法,其原理和步骤如下: 原理: k-means算法的主要目标是将n个数据点划分为k个簇,并使每个数据点与所属簇的中心点(即质心)的距离最小化。其基本思路为先随机选择k个质心,然后迭代地执行以下两个步骤: 1.簇分配:对于每个数据点,计算其与k个质心的距离,将其分配到距离最近的簇;...
k-means算法的目标是最小化所有簇内样本与其簇中心的距离和,即最小化平方误差和。因此,k-means算法的评估指标就是平方误差和。 1. 实现简单,计算速度快。 2. 可用于大规模数据集的聚类。 3. 可用于对数据集的预处理和降维。 k-means算法的缺点和局限性是: 1. 需要预先确定簇数k,但实际应用中往往不知道簇...
解析 答案:K-means聚类算法的基本步骤如下: (1)随机选择K个数据点作为初始聚类中心。 (2)计算每个数据点到各个聚类中心的距离,将数据点分配到距离最近的聚类中心所在的类别。 (3)更新聚类中心:计算每个类别内所有数据点的均值,作为新的聚类中心。 (4)重复步骤2和3,直到聚类中心不再发生变化。
相关知识点: 语言基础及运用 常识 文学常识题 试题来源: 解析 答案:K-means聚类算法是一种常用的无监督学习算法,其原理是将数据点根据特征相似性进行分组,每个组为一个簇,簇内数据点与簇内均值的距离最小化,而不同簇之间的距离最大化。应用场景包括市场细分、图像分割、文档归类等。反馈 收藏 ...
K-means算法是一种经典的聚类算法,用于将样本数据集划分为K个不相交的聚类。这种算法的主要步骤包括初始化聚类中心、计算样本与聚类中心的距离、更新聚类中心、重复计算直至收敛。其优点包括算法简单高效、可扩展性强,但也存在缺点,如初始聚类中心的选择对结果影响较大。 下面将详细介绍K-means算法的主要步骤及其优缺点...
下面是K-means算法的具体步骤: 1.初始化:选择要聚类的数据集,确定聚类的个数k,并随机选择k个数据点作为聚类中心。 2.分配数据点:对于每个数据点,计算其与各聚类中心的距离,并将其分配到最近的聚类中心所在的子集中。 3.更新聚类中心:对于每个聚类中心所在的子集,计算其中所有数据点的平均值,将该平均值作为新的...
01 K-Means聚类算法原理 K-Means算法是一种典型的基于划分的聚类算法,也是一种无监督学习算法。K-Means算法的思想很简单,对给定的样本集,用欧氏距离作为衡量数据对象间相似度的指标,相似度与数据对象间的距离成反比,相似度越大,距离越小。 预先指定初始聚类数以及个初始聚类中心,按照样本之间的距离大小,把样本集划...
问答题:请简述K-means聚类算法的基本步骤。相关知识点: 试题来源: 解析 答案:K-means聚类算法的基本步骤包括:随机选择K个中心点,将每个数据点分配给最近的中心点,形成K个簇;计算每个簇的中心点;重复以上步骤,直到中心点不再变化或达到预设的迭代次数。