解析 答案:K-means聚类算法的基本步骤如下: (1)随机选择K个数据点作为初始聚类中心。 (2)计算每个数据点到各个聚类中心的距离,将数据点分配到距离最近的聚类中心所在的类别。 (3)更新聚类中心:计算每个类别内所有数据点的均值,作为新的聚类中心。 (4)重复步骤2和3,直到聚类中心不再发生变化。
ylim#设置横轴的上下限值plt.xlim(-5, 20)#设置纵轴的上下限值plt.ylim(-5, 20)#plt.savefig('test_xx.png', dpi=200, bbox_inches='tight', transparent=False)plt.show()#调用kmeans聚类算法kms=KMeans(n_clusters=3)
(1)聚类类别具有随机性:K-means聚类第一步是预将数据分为K组,则随机选取K个对象作为初始的聚类中心,此第一步骤带有一定的随机性。(2)聚类效果最终目的:“ 某类别里差异尽量小,类别之间差异尽量大 ”。(3)误差平方和SSE:该值可用于测量各点与中心点的距离情况,理论上是希望越小越好;该指标可用于辅助判断聚类...
k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛...
步骤:分析→ 聚类分析 → K-Means → 选入数据 → 更多 → 模型设置 → 聚类簇数设置为4 → 超参数调优与绘图 → 绘制聚类图 → 确定 最终DMSAS的建模结果如下所示 Python 以下展示使用sklearn,并直接采用sklearn库自带的鸢尾花数据集对K-Means进行实现的案例,这里用到的类是sklearn.cluster.KMeans。 1....
简述K-means聚类分析的基本步骤?相关知识点: 试题来源: 解析 解第1步:确定要分的类别数目K需要研究者自己确定在实际应用中.往往需要研究者根据实际问题反复尝试.得到不同的分类并进行比较.得出最后要分的类别数量。第2步:确定K个类别的初始聚类中心要求在用于聚类的全部样本中.选择K个样本作为K个类别的初始聚类...
K均值聚类分析算法步骤:① K-means算法首先需要选择K个初始化聚类中心 ② 计算每个数据对象到K个初始化聚类中心的距离,将数据对象分到距离聚类中心最近的那个数据集中,当所有数据对象都划分以后,就形成了K个数据集(即K个簇)③ 接下来重新计算每个簇的数据对象的均值,将均值作为新的聚类中心 ④ 最后计算每个...
K-means是一种常用的聚类算法,其流程可以分为以下几个步骤: 1. 初始化,首先选择K个初始的聚类中心点,可以是随机选择或者通过一定的启发式方法选择。 2. 分配数据点,将所有的数据点分配到离它们最近的聚类中心点所对应的类别中,这一步可以通过计算每个数据点与各个聚类中心的距离来实现。 3. 更新聚类中心,对每个...
1)mini batch:既然整个样本集合计算需要时间较长,那么通过抽样选取一部分样本进行聚类。 2)k-means++:原始K-means算法最开始随机选取数据集中K个点作为聚类中心,而K-means++按照如下的思想选取K个聚类中心:假设已经选取了n个初始聚类中心(0<n<K),则在选取第n+1个聚类中心时:距离当前n个聚类中心越远的点会有更...