由于K-means 算法的分类结果会受到初始点的选取而有所区别,因此有提出这种算法的改进:K-means++。 算法步骤 其实这个算法也只是对初始点的选择有改进而已,其他步骤都一样。初始质心选取的基本思路就是,初始的聚类中心之间的相互距离要尽可能的远。 算法描述如下: 步骤一:随机选取一个样本作为第一个聚类中心 c1; ...
import numpy as npimport matplotlib.pyplot as pltfrom sklearn.cluster import KMeans# 生成武侠风格的数据集np.random.seed(42)data_A = np.random.normal(loc=[1, 1], scale=0.2, size=(50, 2))data_B = np.random.normal(loc=[5, 5], scale=0.2, size=(50, 2))data_C = np.random....
基于核函数的 K - Means(Kernel K - Means):通过将数据映射到高维空间,使得在原始空间中非球形分布的数据在高维空间中变得近似球形分布。常用的核函数有高斯核函数等。在高维空间中使用 K - Means 算法进行聚类,然后将结果映射回原始空间。谱聚类(Spectral Clustering):它基于图论和矩阵运算,对数据的相似性...
由于K-means 算法的分类结果会受到初始点的选取而有所区别,因此有提出这种算法的改进: K-means++。 算法步骤 其实这个算法也只是对初始点的选择有改进而已,其他步骤都一样。初始质心选取的基本思路就是,初始的聚类中心之间的相互距离要尽可能的远。 算法描述如下: 步骤一:随机选取一个样本作为第一个聚类中心 c1;...
算法改进 K-Means++初始化:使用更智能的初始化方法,如K-Means++,能够减轻对初始簇中心选择的敏感性...
常用的聚类算法有:K-MEANS、K-MEDOIDS、BIRCH、CURE、DBSCAN、STING。 主要聚类算法分类 类别包括的主要算法划分的方法K-MEANS算法(K平均)、K-MEDOIDS算法(K中心点)、CLARANS算法(基于选择的算法)层次的方法BIRCH算法(平衡迭代规约和聚类)、CURE算法(代表点聚类)、CHAMELEON算法(动态模型)基于密度的方法DBSCAN算法(基于...
Kmeans++的思路正是基于上面的这两点,我们将目前已经想到的洞见整理一下,就可以得到算法原理了。 算法原理 首先,其实的簇中心是我们通过在样本当中随机得到的。不过我们并不是一次性随机K个,而是只随机1个。 接着,我们要从剩下的n-1个点当中再随机出一个点来做下一个簇中心。但是我们的随机不是盲目的,我们...
可以说这也符合我们的直觉:聚类中心当然是互相离得越远越好。这个改进虽然直观简单,但是却非常得有效。 经典K-means算法: 值得一提的是关于聚类中心数目(K值)的选取,的确存在一种可行的方法,叫做Elbow Method: 通过绘制K-means代价函数与聚类数目K的关系图,选取直线拐点处的K值作为最佳的聚类中心数目。
1.程序功能描述 K-means属于聚类分析中一种基本的划分方法,常采用误差平方和准则函数作为聚类准则。主要优点是算法简单、快速而且能有效地处理大数据集。研究和分析了聚类算法...