在聚类任务中,可以通过结合多个K-means聚类结果来得到更稳定的聚类结果。例如,可以采用Bagging或Boosting等集成学习方法来改进K-means算法。 综上所述,K-means算法虽然具有很多优点,但也存在一些局限性。通过采用上述改进方法,我们可以在一定程度上克服这些局限性,提高K-means算法的聚类效果和稳定性。在实际应用中,我们...
步骤二:计算每个样本与当前已有类聚中心最短距离(即与最近一个聚类中心的距离),用D(x)表示;这个值越大,表示被选取作为聚类中心的概率较大;最后,用轮盘法选出下一个聚类中心; 步骤三:重复步骤二,知道选出 k 个聚类中心。 选出初始点后,就继续使用标准的 k-means 算法了。 效率 K-means++ 能显著的改善分类...
7.R语言KMEANS均值聚类和层次聚类:亚洲国家地区生活幸福质量异同可视化 8.PYTHON用户流失数据挖掘:建立逻辑回归、XGBOOST、随机森林、决策树、支持向量机、朴素贝叶斯模型和KMEANS聚类用户画像 9.R语言基于Keras的小数据集深度学习图像分类
数据分布的适应性:K - Means 算法假设数据是球形分布的,对于非球形分布的数据,如具有复杂形状的数据集合,该算法的聚类效果可能会大打折扣。处理大规模数据的效率:当数据规模非常大时,K - Means 算法的计算复杂度会显著增加,迭代次数增多,导致算法的运行时间过长。二、改进方向 优化初始聚类中心选择 K - Mea...
K-Means算法背后的思想是EM算法 二、算法步骤 其步骤也很简单:先按照事先给定的类别数随机选择中心点...
以下是一些可能的K-means算法的改进方向: 初始质心的选择:K-means算法的结果可能会受到初始质心选择的影响,因为算法会围绕这些质心进行迭代。如果初始质心选择不当,可能会导致算法收敛到局部最优解而不是全局最优解。因此,可以考虑使用更复杂的初始化方法,如K-means++,或者使用其他启发式算法来生成初始质心。 处理不...
K-Means++算法实际就是修改了K-Means算法的第一步操作之所以进行这样的优化,是为了让随机选取的中心点不再只是趋于局部最优解,而是让其尽可能的趋于全局最优解。要注意“尽可能”的三个字,即使是正常的K-Means++算法也无法保证百分百全局最优,在说取值原理之后我们就能知道为什么了思路就是我们要尽可能的保证各个...
主要优点是算法简单、快速而且能有效地处理大数据集。研究和分析了聚类算法中的经典K-均值聚类算法,总结出其优点和不足。重点分析了K-均值聚类算法对初始值的依赖性,并用实验验证了随机选取初始值对聚类结果的影响性。根据传统的K-means算法存在的缺陷,提出了改进后的K-means算法,主要解决了孤点对聚类中心影响的问题...
[4] A.K.Jain, MATLAB.C.Dubes. AlgoMatlabithms foMatlab ClusteMatlabing Data [J]. PMatlabentice-Hall Advanced MATLABefeMatlabence SeMatlabies, 1988(1). 点击文末 “阅读原文” 获取全文完整代码数据资料。 本文选自《MATLAB数据挖掘用改进的K-Means(K-均值)聚类算法分析高校学生的期末考试成绩数据》...
摘要:K-means算法是最常用的一种基于划分的聚类算法,但该算法需要事先指定K值、随机选择初始聚类中心等的缺陷,从而影响了K-means聚类结果的稳定性。针对K-means算法中的初始聚类中心是随机选择这一缺点进行改进,利用提出的新算法确定初始聚类中心,然后进行聚类,得出最终的聚类结果。实验证明,该改进算法比随机选择初始聚...