在数据挖掘和机器学习领域,K - Means 聚类算法以其简单高效的特性而被广泛应用。然而,随着数据规模的不断增大和数据类型的日益复杂,K - Means 算法也暴露出了一些局限性。本文将深入探讨 K - Means 聚类算法的改进方向,旨在为相关研究和实践提供有价值的参考。一、K - Means 算法的基本原理与局限性 K - Me...
🔍K-means聚类算法是数据挖掘和机器学习中的经典算法,但仍有改进空间。以下是几种改进策略:1️⃣ 迭代过程优化:使用KD树索引数据,实时更新质心,减少每轮更新标签的繁琐过程。2️⃣ 初始化策略改进:选择初始质心时,考虑数据分布和收敛速度,如尽量远离的质心选择策略。3️⃣ 动态调整K值:根据数据分布动态确...
对异常值和噪声敏感:由于K-means算法是基于距离进行聚类的,因此当数据集中存在异常值或噪声时,可能会导致聚类效果变差。 K-means算法的改进方法: 使用K-means++初始化:为了解决K-means算法对初始值敏感的问题,可以采用K-means++初始化方法。这种方法通过一种特殊的方式来选择初始聚类中心,使得初始聚类中心之间的距离...
原始Kmeans随机选取数据集中K个点作为聚类初始中心,而Kmeans的痛点也在于此。初始中心点的好坏对聚类结果影响很大,因为是随机的,因此算法表现的十分不稳定。再者,对于一些不确定类别数目的自适应情景,K也难以确定。 K-means++ Kmeans++核心思想就一句话:初始化的K个中心点互相离得越远越好。这个改进虽然直观简单,但...
K-Means的主要优点有: 1)原理比较简单,实现也是很容易,收敛速度快。 2)聚类效果较优。 3)算法的可解释度比较强。 4)主要需要调参的参数仅仅是簇数k。 K-Means的主要缺点有: 1)K值的选取不好把握(改进:可以通过在一开始给定一个适合的数值给k,通过一次K-means算法得到一次聚类中心。对于得到的聚类中心,根据...
在开始聚类之前,用户并不知道要把数据划分成几类,也不清楚分组的标准。在有些聚类算法中,如K-Means算法需要事先给出聚类的数目值,而这个值是凭用户的经验所得。 1974年Everitt给出了关于聚类的如下定义:相似的实体在同一个类簇中,不同的实体在不同的类簇中,并且位于同一个类簇中的任意点之间的距离要小于不...
算法中 T1、T2的确定问题 二、K-means++ 参考: 其实这个算法也只是对初始点的选择有改进而已,其他步骤都一样。初始质心选取的基本思路就是,初始的聚类中心之间的相互距离要尽可能的远。 算法描述如下: 步骤一:随机选取一个样本作为第一个聚类中心 c1; ...
K-means算法的改进:K-means++ 由于K-means 算法的分类结果会受到初始点的选取而有所区别,因此有提出这种算法的改进:K-means++。 算法步骤 其实这个算法也只是对初始点的选择有改进而已,其他步骤都一样。初始质心选取的基本思路就是,初始的聚类中心之间的相互距离要尽可能的远。
K-means是最常用的聚类算法,但需要提前处理异常值,对数据的选择比较高。如果要做聚类也可以考虑其他的...