传统的K-means聚类算法需要用户事先给定聚类数目k,但是用户一般情况下并不知道取什么样的k值对自己最有利、或者说什么样的k值对实际应用才是最合理的,这种情况下给出k值虽然对聚类本身会比较快速、高效,但是对于一些实际问题来说聚类效果却是不佳的。所以,下面我提出一种确定最佳聚类个数k的方法。 算法描述与步骤:...
传统的K-means聚类算法需要用户事先给定聚类数目k,但是用户一般情况下并不知道取什么样的k值对自己最有利、或者说什么样的k值对实际应用才是最合理的,这种情况下给出k值虽然对聚类本身会比较快速、高效,但是对于一些实际问题来说聚类效果却是不佳的。所以,下面我提出一种确定最佳聚类个数k的方法。 算法描述与步骤:...
传统的K-means聚类算法需要用户事先给定聚类数目k,但是用户一般情况下并不知道取什么样的k值对自己最有利、或者说什么样的k值对实际应用才是最合理的,这种情况下给出k值虽然对聚类本身会比较快速、高效,但是对于一些实际问题来说聚类效果却是不佳的。所以,下面我提出一种确定最佳聚类个数k的方法。 算法描述与步骤:...
传统的K-means聚类算法需要用户事先给定聚类数目k,但是用户一般情况下并不知道取什么样的k值对自己最有利、或者说什么样的k值对实际应用才是最合理的,这种情况下给出k值虽然对聚类本身会比较快速、高效,但是对于一些实际问题来说聚类效果却是不佳的。所以,下面我提出一种确定最佳聚类个数k的方法。 算法描述与步骤:...
初始聚类中心数目k的选取是一个较为困难的问题。传统的K-means聚类算法需要用户事先给定聚类数目k,但是用户一般情况下并不知道取什么样的k值对自己最有利、或者说什么样的k值对实际应用才是最合理的,这种情况下给出k值虽然对聚类本身会比较快速、高效,但是对于一些实际问题来说聚类效果却是不佳的。所以,下面我提出...
初始聚类中心个数 初始聚类中心数目k的选取是一个较为困难的问题。传统的K-means聚类算法需要用户事先给定聚类数目k,但是用户一般情况下并不知道取什么样的k值对自己最有利、或者说什么样的k值对实际应用才是最合理的,这种情况下给出k值虽然对聚类本身会比较快速、高效,但是对于一些实际问题来说聚类效果却是不佳的...
初始聚类中心数目k的选取是一个较为困难的问题。传统的K-means聚类算法需要用户事先给定聚类数目k,但是用户一般情况下并不知道取什么样的k值对自己最有利、或者说什么样的k值对实际应用才是最合理的,这种情况下给出k值虽然对聚类本身会比较快速、高效,但是对于一些实际问题来说聚类效果却是不佳的。所以,下面我提出...
由于K-means 算法的分类结果会受到初始点的选取而有所区别,因此有提出这种算法的改进:K-means++。 算法步骤 其实这个算法也只是对初始点的选择有改进而已,其他步骤都一样。初始质心选取的基本思路就是,初始的聚类中心之间的相互距离要尽可能的远。 算法描述如下: ...
传统的K-means聚类算法需要用户事先给定聚类数目k,但是用户一般情况下并不知道取什么样的k值对自己最有利、或者说什么样的k值对实际应用才是最合理的,这种情况下给出k值虽然对聚类本身会比较快速、高效,但是对于一些实际问题来说聚类效果却是不佳的。所以,下面我提出一种确定最佳聚类个数k的方法。
K-means算法的缺点: K值选择困难:K-means算法中的K值需要事先确定,而如何选择合适的K值是一个具有挑战性的问题。K值的选择会直接影响到聚类的结果,不同的K值可能会导致完全不同的聚类效果。 对初始值敏感:K-means算法对初始聚类中心的选择非常敏感,不同的初始值可能会导致不同的聚类结果。这意味着算法的稳定性较...