1.可以向KMeans传入的参数: sklearn官网所提供的参数说明有9个,我们使用时,如无特别需要,一般只有第一个参数(n_cluster)需要设置,其他参数直接采用默认值即可。 一种示例: classsklearn.cluster.KMeans(n_clusters=8,init='k-means++',n_init=10,max_iter=300,tol=0.0001,verbose=0,random_state=None,copy...
K-Means算法的参数包括聚类数K,初始化方法,迭代次数等。以下是一些常见的K-Means参数及其详细解释: 1.聚类数K (n_clusters): -说明:K-Means算法需要预先指定聚类的数量K,即希望将数据分成的簇的个数。 -选择方法:通常通过领域知识、实际问题需求或通过尝试不同的K值并使用评估指标(如轮廓系数)来确定。 2.初始...
执行一次k-means算法所进行的最大迭代数。 n_init:整型,缺省值=10 。 用不同的聚类中心初始化值运行算法的次数,最终解是在inertia意义下选出的最优结果。 init:有三个可选值:’k-means++’, ‘random’,或者传递一个ndarray向量。 此参数指定初始化方法,默认值为 ‘k-means++’。 (1)‘k-means++’ 用...
在scikit-learn中,包括两个K-Means的算法,一个是传统的K-Means算法,对应的类是KMeans。另一个是基于采样的Mini Batch K-Means算法,对应的类是MiniBatchKMeans。一般来说,使用K-Means的算法调参是比较简单的。用KMeans类的话,一般要注意的仅仅就是k值的选择,即参数n_clusters;如果是用MiniBatchKMeans的话,也仅...
K-means详解 1.简介 K-Means算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错。 2.算法步骤 1)从n个数据中随机选择 k 个对象作为初始聚类中心; 2) 根据每个聚类对象的均值(中心对象),计算每个数据点与这些中心对象的距离;并根据最小距离准则,重新对数据进行划分;...
KMeans是一种常用的聚类算法,旨在将数据集分成K个簇,使得每个簇内的数据点尽可能相似,而不同簇之间的数据点差异尽可能大。该算法通过迭代的方式更新簇的中心点,直到达到某个终止条件(如中心点不再变化或达到最大迭代次数)。 2. KMeans函数中的主要参数(以scikit-learn库为例) 在Python的scikit-learn库中,KMean...
k-means(k-均值)属于聚类算法之一,笼统点说,它的过程是这样的,先设置参数k,通过欧式距离进行计算,从而将数据集分成k个簇。为了更好地理解这个算法,下面更加详细的介绍这个算法的思想。算法思想 我们先过一下几个基本概念:(1) K值:即要将数据分为几个簇;(2) 质心:可理解为均值,即向量各个维度取...
# 初始化参数 K =4 max_iters =20 tol =1e-4 centroids = data[np.random.choice(data.shape[0], K, replace=False)] labels = np.zeros(data.shape[0]) objective_values = [] # K-means 核心实现 foriterationinrange(max_iters):
2. KMeans参数说明 3. 代码及结果 4 聚类结果可视化 5. 评价聚类模型 5.1 评价体系 5.2 FMI评价法 5.3 轮廓系数 5.4 Calinski-Harabasz指数评价 1. 数据 采用sklearn自带数据集,鸢尾花数据集。 ‘sepal length (cm)’, ‘sepal width (cm)’, ‘petal length (cm)’, 'petal width (cm)'分别是花瓣长度...