使用K-Means算法进行聚类时,哪些参数需要用户预先指定?( )A.聚类中心B.样本集大小C.样本集总数
K-Means算法的参数包括聚类数K,初始化方法,迭代次数等。以下是一些常见的K-Means参数及其详细解释: 1.聚类数K (n_clusters): -说明:K-Means算法需要预先指定聚类的数量K,即希望将数据分成的簇的个数。 -选择方法:通常通过领域知识、实际问题需求或通过尝试不同的K值并使用评估指标(如轮廓系数)来确定。 2.初始...
执行一次k-means算法所进行的最大迭代数。 n_init:整型,缺省值=10 。 用不同的聚类中心初始化值运行算法的次数,最终解是在inertia意义下选出的最优结果。 init:有三个可选值:’k-means++’, ‘random’,或者传递一个ndarray向量。 此参数指定初始化方法,默认值为 ‘k-means++’。 (1)‘k-means++’ 用...
K-means中心思想:事先确定常数K,常数K意味着最终的聚类类别数,首先随机选定初始点为质心,并通过计算每一个样本与质心之间的相似度(这里为欧式距离),将样本点归到最相似的类中,接着,重新计算每个类的质心(即为类中心),重复这样的过程,直到质心不再改变,最终就确定了每个样本所属的类别以及每个类的质心。由于每次...
k-means算法接受输入量k;然后将n个数据对象划分为k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”来进行计算的。 算法实现思路 k-means算法是一种基于样本间相似性度量的间接聚类方法,属于非监督学习方法。
聚类算法:ISODATA算法 ——kmeans算法升级版,不知道k也可以,但是需要你自己指定其他参数也很蛋疼 当K值的大小不确定时,可以使用ISODATA算法。ISODATA的全称是迭代自组织数据分析法。在K均值算法中,聚类个数K的值需要预先人为地确定,并且在整个算法过程中无法更改。而当遇到高维度、海量的数据集时,人们往往很难准确地...
MiniBatchKMeans类的主要参数比KMeans类稍多,主要有: 1) n_clusters: 即我们的k值,和KMeans类的n_clusters意义一样。 2)max_iter:最大的迭代次数, 和KMeans类的max_iter意义一样。 3)n_init:用不同的初始化质心运行算法的次数。这里和KMeans类意义稍有不同,KMeans类里的n_init是用同样的训练集数据来...
在大数据分析中,使用K-means 聚类算法时,通常需要预先指定哪个参数()? A.聚类的中心数(K 值)B.数据集的大小C.数据的维度D.聚类的形状 点击查看答案&解析 你可能感兴趣的试题 单项选择题 在大数据项目中,哪个阶段可能涉及使用数据工程师来优化数据查询性能()? A.数据采集B.数据清洗C.数据存储与管理D.数据分析...
k-means 算法是MacQueen J.在1967年提出来的一种经典的聚类算法[1]。由于其简单、快速的特点,在现实生活中得到广泛的应用。而一般需要用户依据经验给出聚类数k 值,这会给用户增加很大的负担,而且给出k 值具有随机性和不确定性,使得聚类结果不稳定。因此,有必要对k 值的获取进行研究,以减轻用户的负担,...
1.1、高斯混合模型(GMM)及期望最大(EM)算法 1.1.1、GMM (1)基本概念 (2)模型参数估计 1.1.2、EM算法 1.2、贝叶斯公式 1.2.1、乘法公式 1.2.2、全概率公式 1.2.3、贝叶斯公式 二、代码实现 2.1、E-step 2.2、M-step 2.3、使用KMeans进行参数初始化 2.4、使用scikit-learn提供的GMM 三、参考链接 本文重点...