第一个注意到分母可以变成【3+cos(2x)】/2而正好sin(2x)dx=-dcos(2x)/2题目就转化为-∫dcos(2x)/【3+cos(2x)】 2022-01-23 12:134回复 晓之车高山老师 其实up表达的意思就是,被积函数某个地方稍有改动,对应不定积分表达式就可能有很大的变化,甚至完全不同 2022-01-24 03:072回复 QNのstarlake up主...
Take the constant out:∫a⋅f(x)dx=a⋅∫f(x)dx=2sin(d)⋅∫xdx Apply the Power Rule:2x2 =2sin(d)2x2 Simplify2sin(d)2x2:x2sin(d) =x2sin(d) Add a constant to the solution=x2sin(d)+C Enter your problem ...
(a) \int_{0}^{1} (3x^3-5) cosx dx (b) \int_{0}^{e-1} ln(x+1) dx Evaluate the indefinite integral. Integral of (cos x)/(sin^2 x) dx. Evaluate the indefinite integral. (Use C for the constant of integration.) Integral of (sin 2x)/(1 + cos...
数字帝国:integral-calculator。第十四题∫xsinxcosxdx。没有疫苗就不打针算是祸国殃民吗?唉。第十五题∫(x²)cos²(x/2)dx。∫xln(x-1)dx。∫(x^2-1)sin2xdx。∫(lnx)³/x²dx。 知识分享官 必剪创作 知识 科学科普 高考加油 高等数学高数微积分calculus 湖南省益阳市桃江县松木塘镇关山口...
Evaluate the integral: integral sin 5x cos 4x dx. Evaluate the integral: integral from -4 to 4 of ((sin x)/(x^4 + 1) + x^3) dx. Evaluate the integral. Integral of (cos x + sin 2x)/(sin x) dx. Evaluate the integral. integral ({cos (2x)} / {(1 + sin (2 x))} ) ...
Calculate: ∫0π/4sin 2x dx Solution: Let I = ∫0π/4sin 2x dx Now, ∫ sin 2x dx = -(½) cos 2x I = ∫0π/4sin 2x dx = [-(½) cos 2x]0π/4 = -(½) cos 2(π/4) – {-(½) cos 2(0)} = -(½) cos π/2 + (½) cos 0 ...
∫tndt=tn+1n+1+C∫af(t)dx=a∫f(t)dt∫dtt=ln|t|+C∫cos(t)dt=sin(t)+C∫sec2(t)dt=tan(t)+C Answer and Explanation:1 Given Data: The given integral is:I=∫(ln(x))2xdx. Apply u-substitution: {eq}t... ...
∫ a dx = ax+ C ∫ xndx = ((xn+1)/(n+1))+C ; n≠1 ∫ sin x dx = – cos x + C ∫ cos x dx = sin x + C ∫ sec2x dx = tan x + C ∫ csc2x dx = -cot x + C ∫ sec x (tan x) dx = sec x + C ...
{MathJax fullWidth='false' \int cot\: x\: dx = ln |sin \:x| + c What is the integral of trig functions? Integrals can be found for many different functions including the trig functions. The same symbol is used and the functions would look like the following: ∫sinxdx ∫cosxdx...
Integral calculator helps you solve definite and indefinite integrals (antiderivatives) of a function step by step for free. Try it now!