Integral of sec(x)^2 by x: tan(x)+C To compute the integral of sec(x)^2 with respect to x, follow these steps: 1.Identify the integral: We want to compute the integral ∫ sec(x)^2 dx. 2.Recall the antiderivative: The antiderivative of sec(x)^2 is a well-known result. It ...
2414 1 03:41 App 求不定积分 Integral of (x e^(2 x))/(4 x^2 + 4 x + 1) dx 1.1万 8 03:46 App 求不定积分∫sec^3 x dx 7269 10 06:13 App 求不定积分 Integral of Power[tanx, (3)^-1] dx 8.8万 88 06:36 App 求解微分方程 y'y''=y''' 2709 0 03:40 App 求不定积...
it will becomeintegral{(tan(x))^2}dx integral {(tan(x))^2}dx = integral {(sec(x))^2 - 1}dx [since tan^2(x)+1=sec^2(x)] = 1/2( tan(x)) – X +C [integral{sec^2(x)=tanx] Thanks and Regards
Integral of sec(x)*tan(x) by x: 1/cos(x)+C To compute the integral of sec(x) * tan(x) with respect to x, follow these steps: 1.Identify the integral: We want to compute the integral 2.Recall the derivative: Recognize that the derivative of sec(x) is sec(x) * tan(x). Th...
Evaluate the integral. integral 20 / (2 x + 9)^3 dx Evaluate the integral: integral 9/sqrt(9x^2 + 6x - 8) dx Evaluate the integral. Integral of 5sec^3(x) tan(x) dx. Evaluate the integral: integral of 1/(x^2) sqrt(2 - 3/x) dx from 2 to 3. ...
∫secxtanxdx=secx+c∫tanxdx=−ln|cosx|+cddxxn=nxn−1 Answer and Explanation:1 Given integral∫xsecxtanxdx {eq}\displaystyle \int f(x)*g(x)dx=f(x)\int g(x)-\int(\frac{d}{dx}(f(x))*\int... ...
sec^2(x)tan(x) + CThis is the derivative of the tangent function. Integration terms and concepts Function: A relation from a set of inputs to a set of possible outputs where each input is related to exactly one output. Limit: The value that a function approaches as the input approaches...
निम्नलिखित समाकलों (Integrals) का मान ज्ञात कीजिए- (a) int (sec^(2) ... 05:10 समाकलन करें int (x)/(sqrt((2x+1)(2x-3)))dx 07:54 Integrate : int sec^(-1)x...
Evaluate the integral. \int ^\frac {5 \pi}{4} _0 tan \frac {x}{5} dx Evaluate the integral int 0 pi/4 -10 -10 cos2(x) cos2(x) dx Evaluate the integral from 0 to (pi/4) of (5)sec(theta)tan(theta) d(theta)
Therefore,∫sinxcosxdx=sin2x2+constant This integration tool will often make complicated integrals much easier to approach. Answer and Explanation:1 ∫sec2xtan2x9−tan2xdx To simplify this integral, we can use a substitution where: {eq}u = \tan... ...