Answer to: Evaluate the following indefinite integral. Integral of sin^2 t dt. By signing up, you'll get thousands of step-by-step solutions to...
Use the half-angleformula to rewrite ( ((sin))^2(t)) as ( (1-(cos)(2t))2).(∫ (1-(cos)(2t))2dt)Since ( 12) is constant with respect to ( t), move ( 12) out of the integral.( 12∫ 1-(cos)(2t)dt)Split the single integral into multipleintegrals.( 12(∫ 1dt+∫...
Evaluate integral from 0 to x of sin(t^2) with respect to t( (∫ )_0^x(sin)(t^2)dt) 相关知识点: 试题来源: 解析 ( (∫ )_0^x(sin)(t^2)dt) is a special integral. The integral is the Fresnel integralfunction.( S(t)]_0^x)Substitute and simplify.( 0)反馈 收藏 ...
2elpha2 第一个注意到分母可以变成【3+cos(2x)】/2而正好sin(2x)dx=-dcos(2x)/2题目就转化为-∫dcos(2x)/【3+cos(2x)】 2022-01-23 12:134回复 晓之车高山老师 其实up表达的意思就是,被积函数某个地方稍有改动,对应不定积分表达式就可能有很大的变化,甚至完全不同 2022-01-24 03:072回复 QNのstar...
=x1(−cos(xt)) Simplify=−x1cos(xt) Add a constant to the solution=−x1cos(xt)+C Popular Examples Frequently Asked Questions (FAQ) What is the integral of sin(xt) ? The integral of sin(xt) is -1/x cos(xt)+C...
积分对比:Integral of 1/(1 + sin^2 x) dx vs Integral of 1/(1 - Mathhouse 关注 专栏/积分对比:Integral of 1/(1 + sin^2 x) dx vs Integral of 1/(1 - 积分对比:Integral of 1/(1 + sin^2 x) dx vs Integral of 1/(1 - ...
( t(1/2t-1/4(sin)(2t))-(∫ 1/2tdt+∫ -1/4(sin)(2t)dt)) Since ( 1/2) is constant with respect to ( t), move ( 1/2) out of the integral. ( t(1/2t-1/4(sin)(2t))-(1/2∫ tdt+∫ -1/4(sin)(2t)dt)) By the Power Rule, the integral of ( t) with respect...
T hen du=2d, s 1/2du=dj . Rewrte using u and du.(3-(2)-( 1/2t^2+C)-1/2fs()u)Simplify.)-(+)-)Siceis constant wit respet to u, move六out of the integral.(+c)-(/n())Simplify.-)((+)-sn)duT he integral of sin(u) with respect to u is-cos(u).(5-()-(5(+...
d/(dt)(\sqrt[7]{t}+6sqrt(t^7))dtd(7t+6t7)integral of 1/((2x-1)(x+3))∫(2x−1)(x+3)1dx(\partial)/(\partial x)(3sin(3x))∂x∂(3sin(3x))integral of sin^6(x/2)∫sin6(2x)dx(dy)/(dx)-3y=6dxdy−3y=6 ...
SOME OSTROWSKI TYPE INEQUALITIES FOR TWO SIN-INTEGRAL TRANSFORMS OF ABSOLUTELY CONTINUOUS FUNCTIONSDRAGOMIR, SILVESTRU SEVERSORRENTINO, GABRIELETransylvanian Journal of Mathematics & Mechanics