A RIDICULOUSLY AWESOME INTEGRAL int sin(x)sinh(x) from 0 to infinity 74 -- 20:12 App ALL OF MECHANICS depends on this one integral【所有的力学都依赖于这个积分】 84 -- 9:51 App YOUR FAVOURITE CALCULUS RESULT!!! 【你最喜欢的微积分结果!!!】 83 -- 14:12 App MONSTER INTEGRAL【怪物型...
int cos(x)cosh(x) from 0 to infinity trigonometric functions unite! 07:35 A RIDICULOUSLY AWESOME INTEGRAL int sin(x)sinh(x) from 0 to infinity 13:20 One of THE craziest & most beautiful integrals in existence【存在的最疯狂和最美丽的积分之一】 09:55 A stellar integral solved using ...
07:35 A RIDICULOUSLY AWESOME INTEGRAL int sin(x)sinh(x) from 0 to infinity 13:20 One of THE craziest & most beautiful integrals in existence【存在的最疯狂和最美丽的积分之一】 09:55 A stellar integral solved using some wonderful complex analysis【一个恒星积分用一些奇妙的复分析】 20:29 A ...
用Wolfram|Alpha 求积分 卓越的在线积分计算器 Wolfram|Alpha 是一款优秀的计算工具,可用来计算反导数和定积分、双重和三重积分以及反常积分。通过显示绘图、替代形式和其他相关信息提高你的数学直觉思维能力。 进一步了解 Integrals ©2024Wolfram Alpha LLC 使用条款 隐私政策...
无穷积分In(a)=∫∞0sin^nax/x^n(dx)的计算 本文将通过复积分,留数计算和变量替换给出无穷积分I_n(α)=integral from n=1 to ∞(sin~nαx/x~n)dx计算的通用公式. 关大伟,王东达 - 《松辽学刊:自然科学版》 被引量: 0发表: 1996年
Answer to: Compute the integral from 0 to 2pi of e^(-x) cos(x)dx. By signing up, you'll get thousands of step-by-step solutions to your homework...
Hint: The integral from -infinity to t of f(tau) d(tau) (=) f(t) star u(t). Evaluate the integral: int 0 infty (sin (3x) + 2) d/dx delta (x - pi) x. Evaluate the integral: int -1 +1 e abs(x) + 3 delta (x - 2) dx. Evaluate the following integrals. a) ...
Use a power series to evaluate the integral I = integral from 1 to 2 of cos(1/x) dx. Evaluate the integral \int_0^x \arctan(t^2) \,dt using the power series for \arctan(x) Evaluate the integral \int \frac{x}{1+x^...
Evaluate the integral. int dx over x(x^2 + 4)^2 Evaluate the integral. \int_{1}^{2} \frac {x}{x^2 + 4x + 20} dx Evaluate the definite integral. \int_0^{\sqrt{7 x(x^2 + 1)^{\frac{1}{3 dx Evaluate the integral from 0 to 6 of the integral from -6 to 6 of the...
07:35 A RIDICULOUSLY AWESOME INTEGRAL int sin(x)sinh(x) from 0 to infinity 13:20 One of THE craziest & most beautiful integrals in existence【存在的最疯狂和最美丽的积分之一】 09:55 A stellar integral solved using some wonderful complex analysis【一个恒星积分用一些奇妙的复分析】 20:29 A ...