Images generated using Stable Diffusion v1.4 from ImageNet-1K classes as promptsData CardCode (5)Discussion (0)Suggestions (0)About Dataset This dataset consists of images generated by Stable Diffusion v1.4 from diffusers library. 100 images per class. The prompt a photo of {class}, realistic,...
Actions Projects Security Insights Additional navigation options main 1BranchTags Code Latest commit Cannot retrieve latest commit at this time. History 2 Commits .gitignore init May 28, 2023 huggingface_dataset_downloads.ipynb init May 28, 2023 ...
Files main .gitignore huggingface_dataset_downloads.ipynb Breadcrumbs imagenet1k_download / .gitignore Latest commit Cannot retrieve latest commit at this time. HistoryHistory File metadata and controls Code Blame 3 lines (3 loc) · 35 Bytes Raw __pycache__ .ipynb_checkpoints tmp 1 2 3...
当然主要是为了熟悉操作,真的要训练,还是要用后台任务,上ImageNet 1K数据训练才行。 训练前准备 首先下载PaddleClas库文件。然后进入 PaddleClas/dataset/ 目录,下载并解压有人/无人场景的数据。 In [ ] # !git clone https://gitee.com/paddlepaddle/PaddleClas # !cd ~/PaddleClas/dataset && wget https:/...
ImageNet-1000.zip 是 ImageNet-1k验证集(val.zip)制作的,训练集和数据集都包含1000个分类,图片按8:2分割,这样就不存在不均衡数据。 ImageNet-100.zip 与 ImageNet-1000.zip差不多,不过只取了前100个分类,训练速度要快很多。 展开 文件列表 focalnet_base_srf.pdparams focalnet_small_srf.pdparams focalnet...
官网链接:https://cocodataset.org/#home 网盘链接:https://pan.baidu.com/s/14rO11v1VAgdswRDqPVJjMA 提取码:bcmm COCO 是一个大型图像数据集,其被用于机器视觉领域的对象检测与分割、人物关键点检测、填充分割与字幕生成。该数据集以场景理解为主,图像中的目标则通过精确的分割进行位置标定。
更新:这上面的对应文件是15的版本,类别的排序按字典序来,比如卫生纸是n15075141,这个在1k类最大...
DatasetPretrained ModelsImageNet Val Top-1 Acc.Avg. Transfer Top-1 Acc. ImageNet-1K-SDDownload42.968.4 ImageNet-100-SDDownload73.363.2 You can load these pretrained models with the following code: import torch as th from torchvision.models import resnet50 ckpt = th.load("imagenet_1k_sd.pt...
OpenImage-O is built for the ID dataset ImageNet-1k. It is manually annotated, comes with a naturally diverse distribution, and has a large scale. It is built to overcome several shortcomings of existing OOD benchmarks. OpenImage-O is image-by-image filtered from the test set of OpenImag...
To get a small but working mini-ImageNet 1K dataset to work for this, the following steps reproduce: 1. Train and validation folders Download train and validation folders from here: https://www.kaggle.com/datasets/ifigotin/imagenetmini-1000/data (should be proper structure) It will ...