imagenet-1k是 ISLVRC2012的数据集,训练集大约是1281167张+标签,验证集是50000张图片加标签,最终打分的测试集是100000张图片,一共1000个类别。 imagenet-21k是WordNet架构组织收集的所有图片,大约1400万张,2…
Imagenet-1K与Imagenet-21K是两个规模庞大的图像数据集,各自在深度学习领域有着独特地位与应用。Imagenet-1K源自于2012年ISLVRC数据集,它汇集了约1281167张训练图像,每张都标注了类别,验证集则包含50000张图片,带有标签。最终的测试集则由100000张图像组成,覆盖了1000个不同的类别。相比之下,Imagen...
因为训练集128万多,所以常见的训练setting有256 batch size,5000 iters/epoch,这样一个epoch差不多可...
最近,谷歌等机构发现: 性能不好的微调模型先不要扔,求一下平均权重! 就能在不增加推理时间以及内存开销的情况下,提高模型的准确性和鲁棒性。 比如,研究人员就使用该方法创造了ImageNet1K的新纪录:90.94%。 将它扩展到多个图像分类以及自然语言处理任务中,也能提高模型的分布外性能,并改善新下游任务的零样本性能。
该工作是目前唯一实现了大规模高分辨率数据集蒸馏的框架,可以将 Imagenet-1K 原始的 1.2M 数据样本压缩到 0.05M (压缩比 1:20),使用常用的 224x224 分辨率进行蒸馏,在 ImageNet-1K 标准验证集(val set)上取得了目前最高的60.8% Top-1 精度,远超之前所有 SOTA 方法,如 TESLA (ICML’23) 的 27.9% 的...
就能在不增加推理时间以及内存开销的情况下,提高模型的准确性和鲁棒性。 比如,研究人员就使用该方法创造了ImageNet1K的新纪录:90.94%。 将它扩展到多个图像分类以及自然语言处理任务中,也能提高模型的分布外性能,并改善新下游任务的零样本性能。 而这个方法还有一个有趣的名字,叫Module soup—— ...
ImageNet-1K数据集的压缩实现了关键性突破,Top-1精度首次超过60%,标志着大规模数据集蒸馏的转折点。MBZUAI和CMU团队的研究成果SRe2L是首个成功处理高分辨率大规模数据集压缩的框架,它将原始的1.2M样本压缩至0.05M(压缩比20倍),并且在保持高精度的同时,显著降低了训练成本和内存需求。这一创新...
在一些论文中,有的人会将这个数据叫成ImageNet 1K 或者ISLVRC2012,两者是一样的。“1 K”代表的是1000个类别。用这个数据测试模型结构是很方便的。有几点原因:1.很多的论文都使用了此数据集,跟其他模型比较时,可以直接引用结果;2. ImageNet的评价指标是固定的,大家都使用top1 、top5等;3. 可以直接看出你修...
该工作是目前唯一实现了大规模高分辨率数据集蒸馏的框架,可以将 Imagenet-1K 原始的 1.2M 数据样本压缩到 0.05M (压缩比 1:20),使用常用的 224x224 分辨率进行蒸馏,在 ImageNet-1K 标准验证集(val set)上取得了目前最高的 60.8% Top-1 精度,远超之前所有 SOTA 方法,如 TESLA (ICML’23) 的 27.9% 的...
因为训练集128万多,所以常见的训练setting有256 batch size,5000 iters/epoch,这样一个epoch差不多...