在人工智能顶级期刊IEEE TPAMI(影响因子:23.6)上发表题为“Robust Visual Question Answering: Datasets, Methods, and Future Challenges”(鲁棒视觉问答:数据集、方法与挑战)的综述论文,对鲁棒视觉问答方法与测评数据集进行了深入探讨与梳理,并对该方向下一步的关注重点进行了凝练与...
近日,人工智能领域国际顶级学术刊物IEEE Transactions on Pattern Analysis and Machine Intelligence(即IEEE TPAMI,影响因子17.861)接收了华为云员工博士论文期间的研究成果——论文“What is a Tabby? Interpretable Model Decisions by Learning Attribute-based Classification Criteria”。华为云已进一步联合中国科学院计算技...
近日,人工智能领域顶级国际期刊 IEEE Transactions on Pattern Analysis and Machine Intelligence(IEEE TPAMI,影响因子24.314)再次接收了火山语音团队有关机器学习的技术研究成果,即“基于自适应迁移核函数的迁移高斯回归模型”( ADATPITVE TRANSFER KERNEL LEARNING FOR TRANSFER GAUSSIAN PROCESS REGRESSION) https://ieeexp...
第二次是一审5个半月,二审是两个半月。 LXWNUDT 7楼: Originally posted by 香子兰 at 2012-08-20 14:03:52 我投过两次,第一次用了7个月,而且是我从第四个月开始以每月一封email的频率催稿。 第二次是一审5个半月,二审是两个半月。 谢谢回复!!香子兰,您中了几票TPAMI啦, 15 1 2 ››猜...
TIP 是不错的图像处理期刊,相比于TPAMI,IJCV档次是差了些,但远远比PR好。虽然影响因子不太高,那是因为IEEE的影响因子整体都不太高。 PR国人灌水过多,在国外影响力一般。 JCR分区是2区,那是因为分区是根据学科和影响因子。 能中这样期刊的人,水平还是可以肯定的 ...
更重要的一点,该理论全面地展示了不同领域相关性与迁移效果的关系,对未来设计创新的多源迁移算法具有重要的借鉴意义。该研究成果已被人工智能领域顶级国际期刊 IEEE TPAMI 接收。 方法 本文的核心是设计一种迁移核函数,不仅能够准确拟合不同领域的数据的特征,而且能够通过建模不同领域之间的相关性来控制不同源领域(...
“深度赋智”首推以知识驱动的全自动机器学习架构,应用于 2020 四月结束的国际自动机器学习领域的顶级赛事 NeurIPS-AutoDL 竞赛,并以压倒性优势获得世界冠军,相关论文于近日被人工智能顶刊 IEEE TPAMI 接收。“深度赋智”已将该成果应用于天机自动机器学习平台,致力于让每家企业都具有开箱即用的 AI 能力。
[IEEE TPAMI] HGNN+: 通用超图神经网络 今天给大家介绍的是清华大学的高跃等人发表在IEEE Transactions on Pattern Analysis and Machine Intelligence上的工作《HGNN+: General Hypergraph Neural Networks》。近年来,图神经网络(Graph Neural Networks,GNN)引起了越来越多的关注。然而,现有的GNN框架是基于简单图进行部署...
药物-药物间不良反应(ADDI)是医疗系统中住院和死亡的主要原因,本文提出了一种统一的多属性判别表示学习MADRL模型用于ADDI预测,MADRL使用生成对抗网络GAN来捕获ADDIs属性间的共享和属性内的特异性信息,并利用它们进行ADDI预测。通过与11种模型比较,在公开数据集上验证了MADRL算法的有效性。
「深度赋智」首推以知识驱动的全自动机器学习架构,应用于2020年4月结束的国际自动机器学习领域的顶级赛事 NeurIPS-AutoDL竞赛,并获得冠军,相关论文于近日被人工智能顶刊IEEE TPAMI接收。本文对此文章进行了深度解读。 2020 年 4 月,深度赋智使用全自动机器学习框架获得了国际自动机器学习领域的顶级赛事 NeurIPS-AutoDL ...