模型:Meta 发布了多个模型,70 亿、130 亿、700 亿、340 亿参数变体 ,以及 Llama 2-Chat。Meta 将预训练语料库的大小增加了 40%,将模型的上下文长度增加了一倍至 4k,并采用了分组查询注意力机制;(注:Llama 2 是否可被定义为「开源模型」目前还存在争议,作者在最新的更正版本中认为它不是。) 性能:Llama 2 ...
下图将 Llama 2-Chat 模型的人类评估结果与开源和闭源模型进行比较:结果显示,Llama 2-Chat 模型在单回合和多回合提示上均显著优于开源模型。特别是,Llama 2-Chat 7B 模型在 60% 的提示上胜过 MPT-7B-chat 模型。而 Llama 2-Chat 34B 模型在与容量相当的 Vicuna-33B 和 Falcon 40B 模型对战中,总体胜率超过 ...
下图将 Llama 2-Chat 模型的人类评估结果与开源和闭源模型进行比较:结果显示,Llama 2-Chat 模型在单回合和多回合提示上均显著优于开源模型。特别是,Llama 2-Chat 7B 模型在 60% 的提示上胜过 MPT-7B-chat 模型。而 Llama 2-Chat 34B 模型在与容量相当的 Vicuna-33B 和 Falcon 40B 模型对战中,总体胜率超过 ...
原始Llama.CPP是用 C++ 编写的,但我将使用 Python 库,它更容易使用。 开源仓库地址:https://github.com/ggerganov/llama.cpp 本文要下载的大模型:https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF 它上面也是会介绍如何下载模型的 安装所需的软件库 pkginstalltur-repo libopenblas libandroid-execinfo ...
通过termux tailscale huggingface 来手把手一步一步在手机上部署LLAMA2-7b和LLAMA2-70b大模型 前言 首先截图一下我的小米手机的配置 我这个配置其实一般,当时主要为了存储空间大,而我对配置要求又不高,买的。 在手机上安装termux app,然后在termux上就可以使用各种命令进行安装和使用,就像在linux操作系统上一样了。
model ="meta-llama/Llama-2-7b-chat-hf" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) sequences = pipeline( 'I liked "Breaking Bad" and "Band of Brothers". Do you have ...
下图将 Llama 2-Chat 模型的人类评估结果与开源和闭源模型进行比较:结果显示,Llama 2-Chat 模型在单回合和多回合提示上均显著优于开源模型。特别是,Llama 2-Chat 7B 模型在 60% 的提示上胜过 MPT-7B-chat 模型。而 Llama 2-Chat 34B 模型在与容量相当的 Vicuna-33B 和 Falcon 40B 模型对战中,总体胜率超过...
通过termux tailscale huggingface clash 来手把手一步一步部署LLAMA2-7b和LLAMA2-70b大模型 前言 首先截图一下我的小米手机的配置 我这个配置其实一般,当时主要为了存储空间大,而我对配置要求又不高,买的。 在手机上安装termuxapp,然后在termux上就可以使用各种命令进行安装和使用,就像在linux操作系统上一样了。 再...
I am using huggingface transformer API and meta-llama/Llama-2-7b-chat-hf model to generate responses in an A100. I find out that it can generate response when the prompt is short, but it fails to generate a response when the prompt is long. The max_length is 4096 for meta-llama/Llama...
Llama2 示例代码 # 导入必要的库fromtransformersimportAutoTokenizer,AutoModelForCausalLM# 导入HuggingFace API Tokenimportosos.environ['HUGGINGFACEHUB_API_TOKEN']='API Token'# 加载预训练模型的分词器tokenizer=AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")# 加载预训练的模型# 使用 device...