fromdatasetsimportload_dataset dataset = load_dataset(path='squad', split='train') 2.2 从本地加载数据集 2.2.1 加载指定格式的文件 用path参数指定数据集格式 json格式,path="json" csv格式,path="csv" 纯文本格式,path="text" dataframe格式,path="panda" ...
一、Load dataset 本节参考官方文档:Load数据集存储在各种位置,比如 Hub 、本地计算机的磁盘上、Github 存储库中以及内存中的数据结构(如 Python 词典和 Pandas DataFrames)中。无论您的数据集存储在何处, Datasets 都为您提供了一种加载和使用它进行训练的方法。 本节将向您展示如何从以下位置加载数据集: 没有...
本文基于datasets V2.12.0 Hugging Face Hub提供大量的开源数据集,但是在实际的项目中更多的会用到自己的数据集,本文使用尽量清晰、简短的语言描述个人数据脚本的使用、脚本的编写。 本文demo以及参考py文件可见链接: Hyper-VII/LoadDataByScript (github.com) 数据脚本及其使用 数据脚本就是自己编写的、用于读取自用数...
从本地文件加载:使用Dataset.from_(format)方法,例如Dataset.from_csv、Dataset.from_json等,根据数据集的格式选择对应的方法,从本地文件中加载数据集。 从Hugging Face Datasets Hub加载:使用datasets.load_dataset方法,从Hugging Face Datasets Hub中下载和加载数据集。 从Pandas DataFrame加载:使用Dataset.from_pandas...
通过使用datasets,我们可以方便地加载、处理和查询各种NLP数据集,提高数据处理效率。 二、加载数据集 使用datasets加载数据集非常简单,只需调用load_dataset函数并传入相应的参数即可。参数可以是HuggingFace Hub上的数据集存储库命名空间和数据集名称,也可以是本地磁盘上的数据集文件路径。加载完成后,将返回一个数据集...
Datasets库是Hugging Face的一个重要的数据集库。 当需要微调一个模型的时候,需要进行下面操作:下载数据集使用Dataset.map() 预处理数据加载和计算指标可以在官网来搜索数据集:https://huggingface.co/datasets 二、操作 1. 下载数据集 使用的示例数据集:from datasets import load_dataset# 加载数据dataset = ...
(4)datasets 常用的模块有: Dataset:数据集对象,代表一个数据集,用于单个数据集的保存、加载、处理等操作 DatasetDict:数据集字典,代表多个数据集,用于多个数据集的保存、加载、处理等操作 load_dataset:用于加载原始数据文件,并返回 DatasetDict load_from_disk:用于加载HuggingFacet 自定义的数据文件,并返回 Dataset...
dataset.save_to_disk(save_path) 1. 2. 3. 4. 5. 6. 7. 8. huggingface可以把处理好的数据保存成下面的格式: 下载到本地后的数据结构如下: 2.加载本地的arrow文件:load_from_disk from datasets import load_from_disk path = './train' # train:表示上述训练集在本地的路径 ...
from datasetsimportload_dataset 使用datasets读取数据集 下面的代码读取原始数据集的train部分的前40000条作为我们的训练集,40000-50000条作为开发集(只使用这个子集已经可以训出不错的模型,并且可以让训练时间更短),原始的测试集作为我们的测试集。 代码语言:javascript ...
dataset=datasets.load_from_disk("mypath/datasets/yelp_full_review_disk") 就可以正常使用数据集了: 注意,根据datasets的文档,这个数据集也可以直接存储到S3FileSystem(https://huggingface.co/docs/datasets/v2.0.0/en/package_reference/main_classes#datasets.filesystems.S3FileSystem)上。我觉得这大概也是个类...