from transformers import Seq2SeqTrainer trainer = Seq2SeqTrainer( model, args, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["validation"], data_collator=data_collator, tokenizer=tokenizer, compute_metrics=compute_metrics, ) 在训练之前,先验证下模型的性能,来和微调后...
在每个epoch结束时,Trainer将评估序列分数并保存训练检查点。 将训练参数与model, dataset, tokenizer, data collator, 和compute_metrics函数一起传递给Trainer。 调用train()来调整模型。 training_args = TrainingArguments( output_dir="my_awesome_wnut_model", learning_rate=2e-5, per_device_train_batch_size...
IMDb数据集的通用基准指标是准确率,所以这里使用 datasets 库的 load_metric 函数来加载 metric 脚本,稍后可以与 compute 方法一起使用。 metric = load_metric("accuracy") metric.compute(predictions=[0,0,1,1], references=[0,1,1,1]) # {'accuracy': 0.75} 1. 2. 3. 4. 下载的数据集有训练和测...
IMDb数据集的通用基准指标是准确率,所以这里使用 datasets 库的 load_metric 函数来加载 metric 脚本,稍后可以与 compute 方法一起使用。 metric = load_metric("accuracy") metric.compute(predictions=[0,0,1,1], references=[0,1,1,1]) # {'accuracy': 0.75} 下载的数据集有训练和测试拆分,但我们还需要...
defcompute_metrics(eval_pred): predictions, labels = eval_pred predictions = np.argmax(predictions, axis=1) returnaccuracy.compute(predictions=predictions, references=labels) 训练模型 在开始训练前,需要定义一个id到标签和标签到id的map: id2label = {0:"NEGATIVE",1:"POSITIVE"} ...
compute_metrics=compute_metrics, preprocess_logits_for_metrics=preprocess_logits_for_metrics, ) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 当然,如果你能改虚拟内存,把硬盘的空间,切一部分出来,当虚拟内存(CPU内存的2倍),那代码运行速度会更快!
compute_metrics=compute_metrics ) # ... train the model! trainer.train() 在训练过程中,可以刷新 TensorBoard 来查看训练指标的更新。在本文中,只看到训练集上的损失、验证集上的损失和验证集上的准确率。 训练集上的损失在第一个训练步骤期间迅速减少。训练结束时损失约为 0.23。
compute_metrics=compute_metrics ) # ... train the model! trainer.train() 在训练过程中,可以刷新 TensorBoard 来查看训练指标的更新。 在本文中,只看到训练集上的损失、验证集上的损失和验证集上的准确率。 训练集上的损失在第一个训练步骤期间迅速减少。 训练结束时损失约为 0.23。
(train_ds) // batch_size trainer = Trainer(model_init=model_init, args=training_args, data_collator=data_collator, compute_metrics=compute_metrics, train_dataset=train_ds, eval_dataset=valid_ds, tokenizer=xlmr_tokenizer) trainer.train() if training_args.push_to_hub: trainer.push_to_hub(...
[transformers.modeling_utils.PreTrainedModel] = None,compute_metrics: Optional[Callable[transformers.trainer_utils.EvalPrediction,Dict]] = None,callbacks: Optional[List[transformers.trainer_callback.TrainerCallback]] = None,optimizers: Tuple[torch.optim.optimizer.Optimizer,torch.optim.lr_scheduler.LambdaLR...