因此,Hugging Face 技术主管 Philipp Schmid 介绍了如何使用 PyTorch FSDP 和 Q-Lora,并在 Hugging Face 的 TRL、Transformers、peft 和 datasets 等库的帮助下,对 Llama 3 进行微调。除了 FSDP,作者还对 PyTorch 2.2 更新后的 Flash Attention v2 也进行了适配。 微调主要步骤如下: 设置开发环境 创建并加载数据...
因此,Hugging Face 技术主管 Philipp Schmid 介绍了如何使用 PyTorch FSDP 和 Q-Lora,并在 Hugging Face 的 TRL、Transformers、peft 和 datasets 等库的帮助下,对 Llama 3 进行微调。除了 FSDP,作者还对 PyTorch 2.2 更新后的 Flash Attention v2 也进行了适配。 微调主要步骤如下: 设置开发环境 创建并加载数据...
一键部署 Hugging Face 模型 API Server WebUI 离线推理 部署4bit 量化模型 构建量化模型 使用量化模型 结语 Hugging Face 平台在人工智能研究,尤其是自然语言处理领域产生深远影响,平台通过提供易用的接口、丰富的预训练模型和开源工具如 transformers,简化了语言模型的使用难度, 大大降低了 NLP 应用的开发门槛。另外...
model_id: "meta-llama/Meta-Llama-3-70b" # Hugging Face model id dataset_path: "." # path to dataset max_seq_len: 3072 # 2048 # max sequence length for model and packing of the dataset # training parameters output_dir: "./llama-3-70b-hf-no-robot" # Temporary output directory for...
可以使用 Hugging Face 训练配置工具来配置训练器。 训练器类要求用户提供: 指标 基础模型 训练配置 除了Trainer所计算的默认loss指标外,还可以配置评估指标。 以下示例演示如何将accuracy添加为指标: Python importnumpyasnpimportevaluate metric = evaluate.load("accuracy")defcompute_metrics(eval_pred):logits, la...
training_args=TrainingArguments(output_dir="my_awesome_model",learning_rate=2e-5,per_device_train_batch_size=16,per_device_eval_batch_size=16,num_train_epochs=2,weight_decay=0.01,evaluation_strategy="epoch",save_strategy="epoch",load_best_model_at_end=True,push_to_hub=True,)trainer=Trainer...
Hugging Face 是一家为自然语言处理 (NLP) 模型训练和部署提供平台的公司。该平台拥有适用于各种 NLP 任务的模型库,包括语言翻译、文本生成和问答。这些模型在广泛的数据集上接受训练,旨在在广泛的自然语言处理 (NLP) 活动中表现出色。 Hugging Face 平台还包括用于在特定数据集上微调预训练模型的工具,这有助于使算...
from transformersimportAutoTokenizer,AutoModelForTokenClassification,TrainingArguments,Trainer,DataCollatorForTokenClassification 2.加载数据集 代码语言:javascript 复制 # 如果加载失败 可以通过本地下载到磁盘然后再加载 ner_datasets=load_dataset("peoples_daily_ner",cache_dir="./data") ...
在Hugging Face 上,这两种加载模型的方式有一些关键区别,并会影响后续的使用。 方式1:使用pipeline高层次 API from transformers import pipeline pipe = pipeline("text-generation", model="defog/sqlcoder-70b-alpha") 1. 2. 3. 优点: 简化:pipeline提供了一个高级接口,将模型加载、tokenizer 配置、输入处理和...
Hugging Face 是一家为自然语言处理 (NLP) 模型训练和部署提供平台的公司。该平台拥有适用于各种 NLP 任务的模型库,包括语言翻译、文本生成和问答。这些模型在广泛的数据集上接受训练,旨在在广泛的自然语言处理 (NLP) 活动中表现出色。 Hugging Face 平台还包括用于在特定数据集上微调预训练模型的工具,这有助于使算...