(1)初始化HOG描述符hog = cv2.HOGDescriptor() (2)将SVM设置为预训练的行人检测器,通过cv2.HOGDescriptor_getDefaultPeopleDetector()函数加载 (3)使用detecMultiScale函数检测图像中的行人,返回值为行人对应的矩形框和权重值 (4)遍历检测到的矩形框,将其绘制在图像中 import cv2 # 导入 opencv import matplotlib...
这里只是用到了HOG的识别模块,OpenCV把HOG包的内容比较多,既有HOG的特征提取,也有结合SVM的识别,这里的识别只有检测部分,OpenCV提供默认模型,如果使用新的模型,需要重新训练。 三、如何降低行人检测误识率 本节转载于:机器视觉学习笔记(3)–如何降低行人检测误识率 现在的行人检测算法大多是应用HOG特征识别整体,虽...
Hog特征结合 SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal 在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主。 (1)主要思想: 在一副图像中,局部目标的表象和形状(appearance an...
OpenCV实现了两种类型的基于HOG特征的行人检测,分别是SVM和Cascade,OpenCV自带的级联分类器的文件的位置在“XX\opencv\sources\data\hogcascades”(OpenCV4.x版本可用)。 opencv自带的人数检测文件,所在位置在opencv的安装目录下(下面是我的安装位置): D:\Program Files\opencv\sources\samples\cpp HOGDescriptor的构造...
传统目标分类器主要包括Viola Jones Detector、HOG Detector、DPM Detector,本文主要介绍HOG Detector与SVM分类器的组合实现行人检测。 HOG(Histograms of Oriented Gradients:定向梯度直方图)是一种基于图像梯度的特征提取方法,被广泛应用于计算机视觉和机器学习领域。由Navneet Dalal和Bill Triggs在2005年提出。
编程语言:c/c++ 主要内容:svm+hog训练自己数据集合进行检测行人,可以标示检测框的,当然这个数据集可以换成任意的物体。 数据集:INRIA行人检测数据集百度云下载,http://pan.baidu.com/s/1eSdlw7g 先上一张效果图: 参考:hog+svm 实现行人检测(C++ opencv3.4) ...
HOG(Histogram of Oriented Gradient)特征在对象检测与模式匹配中是一种常见的特征提取算法,是基于本地像素块进行特征直方图提取的一种算法,对象局部的变形与光照影响有很好的稳定性,最初是用HOG特征来来识别人像,通过HOG特征提取+SVM训练,可以得到很好的效果,OpenCV已经有了。HOG特征...
OpenCV预训练SVM行人HOG特征分类器实现多尺度行人检测 HOG概述 HOG(HistogramofOriented Gradient)特征在对象检测与模式匹配中是一种常见的特征提取算法,是基于本地像素块进行特征直方图提取的一种算法,对象局部的变形与光照影响有很好的稳定性,最初是用HOG特征来来识别人像,通过HOG特征提取+SVM训练,可以得到很好的效果...
在2005年CVPR上,来自法国的研究人员Navneet Dalal 和Bill Triggs提出利用Hog进行特征提取,利用线性SVM作为分类器,从而实现行人检测。而这两位也通过大量的测试发现,Hog+SVM是速度和效果综合平衡性能较好的一种行人检测方法。后来,虽然很多研究人员也提出了很多改进的行人检测算法,但基本都以该算法为基础框架。因此,Hog...
基于Matlab SVM+HOG行人检测QQ 8872401, 视频播放量 493、弹幕量 0、点赞数 2、投硬币枚数 0、收藏人数 3、转发人数 1, 视频作者 2zcode, 作者简介 猿创代码.精彩展示.运行无错!,相关视频:基于Python利用HOG+SVM进行视频行人检测,基于Matlab的人体身高检测,基于Matlab