首先,使用cv2.HOGDescriptor()实例化HOG特征描述符类;然后再用cv2.HOGDescriptor_getDefaultPeopleDetector()静态函数获取行人检测训练的分类器的系数x;再之后将系数x传入cv2.HOGDescriptor.setSVMDetector()函数,用于激活默认的SVM分类器;最后使用cv2.HOGDescriptor.detectMultiScale()函数实现行人检测,它返回检测到的对象的...
HOG(Histogram of Oriented Gradient)特征在对象检测与模式匹配中是一种常见的特征提取算法,是基于本地像素块进行特征直方图提取的一种算法,对象局部的变形与光照影响有很好的稳定性,最初是用HOG特征来来识别人像,通过HOG特征提取+SVM训练,可以得到很好的效果,OpenCV已经有了。HOG特征...
这里只是用到了HOG的识别模块,OpenCV把HOG包的内容比较多,既有HOG的特征提取,也有结合SVM的识别,这里的识别只有检测部分,OpenCV提供默认模型,如果使用新的模型,需要重新训练。 三、如何降低行人检测误识率 本节转载于:机器视觉学习笔记(3)–如何降低行人检测误识率 现在的行人检测算法大多是应用HOG特征识别整体,虽...
OpenCV实现了两种类型的基于HOG特征的行人检测,分别是SVM和Cascade,OpenCV自带的级联分类器的文件的位置在“XX\opencv\sources\data\hogcascades”(OpenCV4.x版本可用)。 opencv自带的人数检测文件,所在位置在opencv的安装目录下(下面是我的安装位置): D:\Program Files\opencv\sources\samples\cpp HOGDescriptor的构造...
算法知识:HOG特征提取、SVM模型构建 实战目的:本次实战的目的是熟悉HOG+SVM工作流算法,初步掌握图像分类的传统算法。 实战记录:本以为在学习原理、算法应用、动手实操后会很顺利的完全自主实现行人检测项目,但实战过程却差强人意,所以结果嘛就马马虎虎了。实战过程中所爆露出的不足有以下几点: ...
一种基于HOG+SVM的行人检测算法 在先进驾驶辅助系统中, 基于视觉的行人检测只能对摄像头视野范围内的无遮挡行人进行检测, 并且易受天气的影响, 在极端天气下无法工作。针对视觉检测的缺陷, 提出了一种利用超宽带(Ultra Wideband,UWB)通信模块检测行人位置信息的方法, 并对其进行卡尔曼滤波以减小误差, 同时将得到...
OpenCV可以直接调用行人检测器实现行人检测。 基本流程: (1)初始化HOG描述符 hog = cv2.HOGDescriptor() (2)将SVM设置为预训练的行人检测器,通过cv2.HOGDescriptor_getDefaultPeopleDetector()函数加载 (3)使用detecMultiScale函数检测图像中的行人,返回值为行人对应的矩形框和权重值 ...
使用OpenCv进行行人检测的主要思想: HOG + SVM HOG: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。HOG特征通过计算和统计图像局部区域的梯度方向直方图来构成特征. SVM: (Support Vector Machine)指的是支持向量机,是常见的一种判别方法。在...
它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合 SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal 在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主。