方向梯度直方图(Histogram of Oriented Gradient, HOG)是一种用于目标识别的特征描述子。它和SVM相结合,是应用最为广泛的行人检测算法之一。 HOG的作者是Navneet Dalal和Bill Triggs,对应的论文是“Histogram of oriented gradients for human detection”。HOG特征提取和目标识别流程如图29-35所示。 接下来详细分析HOG的...
HOG特征(Histogram of Oriented Gradients,定向梯度直方图)因其在图像处理和计算机视觉中的强大性能,被广泛应用于多种商业场景。以下是一些典型的商业应用场景:1. 行人检测:在视频监控系统中,HOG特征被用来检测图像中的行人,这对于安全监控、人流统计和行为分析等领域非常重要。2. 车辆检测:HOG特征也用于车辆检...
计算图像横坐标和纵坐标方向的梯度,并据此每个像素位置的梯度方向。计算不同的梯度计算方法对于检测器性能有很大影响。作者在对图像进行高斯平滑后,测试了不同的梯度计算方法,包括一维模板[-1,1]、[-1,0,1]、[1,-8,0,8,-1]等,最终选择使用[-1,0,1]计算水平方向梯度,用其转置计算垂直方向梯度。 因此图像...
方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究...
hog(histogram of oriented gradients)是行人检测,目标检测最重要的特征之一,但其运算速度相对比较慢。本程序是HOG的SSE实现加速,非常有价值。
这种方法跟边缘方向直方图(edge orientation histograms)、尺度不变特征变换(scale-invariant feature transform descriptors) 以及形状上下文方法( shape contexts)有很多相似之处,但与它们的不同点是:HOG描述器是在一个网格密集的大小统一的细胞单元(dense grid of uniformly spaced cells)上计算,而且为了提高性能,还采用...
Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究...
1、图像梯度方向直方图学习 HOG(Histogram of Oriented Gradient)是2005年CVPR会议上,法国国家计算机科学及自动控制研究所的Dalal等人提出的一种解决人体目标检测的图像描述子,该方法使用梯度方向直方图(Histogram of Oriented Gradients,简称HOG)特征来表达人体,提取人体的外形信息和运动信息,形成丰富的特征集。 HOG描述子...
✔️ HOG(Histogram of Oriented Gradient)特征在对象识别与模式匹配中是一种常见的特征提取算法,是基于本地像素块进行特征直方图提取的一种算法,对象局部的变形与光照影响有很好的稳定性。 HOG应用-行人检测 ✔️ 用HOG特征来来识别人像,通过HOG特征提取+SVM训练,可以得到很好的效果,Opencv也集成了HOG进行的行...
HOG(Histogram of Oriented Gradient)特征在对象检测与模式匹配中是一种常见的特征提取算法,是基于本地像素块进行特征直方图提取的一种算法,对象局部的变形与光照影响有很好的稳定性,最初是用HOG特征来来识别人像,通过HOG特征提取+SVM训练,可以得到很好的效果,OpenCV已经有了。HOG特征提取的大致流程如下: ...