3 GMM-HMM模型的超参(列出主要的,可能需要通过交叉验证,或建模迭代来优化) 三、GMM-HMM语音识别模型的类型 1 根据训练集是否提供“人工标注的状态序列”,学习算法分为有监督学习和无监督学习。 2 根据语音单位不同,状态集合元素分为音素或子音素。关于音素:英语的音素为各种清音、辅音;中文的音素为各种声母和韵母...
GMM是一种包含隐变量的模型。在GMM产生样本的过程中,首先根据 ck 随机选择一个高斯分布,然后根据第 k 个高斯分布的概率密度 N(x|μk,Σk) 产生样本 x 。由于在训练过程中仅知道 {x1,x2...xN} ,而不知道每个样本来源于哪个高斯分布,因而存在隐变量 γ(n,k) ,其表示第 n 个样本来源于第 k 个高斯分...
GMM-HMM为经典的声学模型,基于深度神经网络的语音识别技术,其实就是神经网络代替了GMM来对HMM的观察概率进行建模,建模解码等识别流程的格个模块仍然沿用经典的语音识别技术 接下来我将从GMM、最大似然估计到EM算法实例,再到最后使用一段语音介绍GMM-HMM声学模型参数更新过程 一、GMM (混合高斯分布) 1、正态分布(高斯...
GMM 高斯混合模型 (Gaussian mixture model,GMM) 就是用混合的高斯随机变量的分布来拟合训练数据(音频特征)形成的模型。该方法提供了一种基于规则的方法来衡量一个音素和被观察音频帧的「距离」。 给定一个音素,我们可以使用 GMM 学习观察值的特征向量,这个概率分布允许我们在给定一个音素(状态)下计算音频段的似然 ...
各种组合和变化也是层出不穷,而随着深度学习的兴起,使用了接近30年的语音识别声学模型HMM(隐马尔科夫模型)逐渐被DNN(深度神经网络)所替代,模型精度也有了突飞猛进的变化,其中声学模型模型结构经历了从经典的GMM-HMM,到DNN-HMM,再到DNN+CTC的转变,本文列出了其中的常见模型,权当是一篇导读性质的文章,供大家学习时...
语音识别中的HMM-GMM模型:从一段语音说起 虽然现在端到端语音识别模型可以直接对后验概率建模,可以不需要HMM结构了。但实际上目前很多state-of-the-art模型还是以HMM结构为主,比如chain model。而且掌握HMM-GMM结构,对于深入理解语音识别过程是由有一定好处的。
GMM(Gaussian Mixture Model)混合高斯模型,就是一堆不同分布的高斯模型按一定比例组合在一起,用来对特征进行分类; HMM(Hidden Markov Model)是隐马尔可夫模型,用来对序列进行建模,从一个观测序列,推出对应的状态序列,也就是“由果找因”。这里的“因”一般是隐藏的,无法简单的看出来的(除非你有透视眼),所以叫...
基于孤立词的GMM-HMM语音识别系统 语音识别中GMM是一个对角的GMM,它的协方差为对角阵,这是因为在GMM-HMM语音识别中,一般使用MFCC特征,而MFCC特征各维特征是独立的,只需要对角阵就可以描述它,此外,对角GMM模型的参数量相对较少,所需的计算量也更少。
高斯混合模型(GMM)参数:GMM用于对观测数据进行建模,通常由多个高斯分布组成。每个高斯分布都有均值向量和协方差矩阵作为参数。如果GMM中有K个高斯分布,那么GMM参数的数量就是2K(每个高斯分布的均值向量和协方差矩阵)。 隐马尔可夫模型(HMM)参数:HMM用于对状态序列进行建模。HMM包含状态转移矩阵、初始状态概率向量和发射概...
声学模型作用就是计算声学分 声学模型的训练: 输入:特征序列、特征序列对应的状态序列(每一帧对应一个状态) 输出:HMM的观察概率GMM模型的参数 优化算法:EM算法 GMM参数可使用EM算法迭代,但是在训练过程中也需要 特征序列和标注文本(音素、状态)的对应关系,因此,需要对特征序列和标注文本对齐。