1 Introduction语音识别(ASR)中隐马尔可夫模型(HMM)和深度神经网络-隐马尔可夫(DNN-HMM)混合模型 2 Problem Statement模型输入:语音信号(音频) X 文字内容: Y 模型输出:文字内容 \hat{Y} 使得 \hat{Y} = \matho…
DNN-HMM用DNN替换了GMM来对输入语音信号的观察概率进行建模。 GMM对HMM中的后验概率的估计需要数据发布假设,同一帧元素之间需要相互独立,因此GMM-HMM使用的特征是MFCC,这个特征已经做了去相关性处理。 DNN-HMM不需要对声学特征所服从的分布进行假设,使用的特征是FBank,这个特征保持着相关性。 DNN的输入可以采用连续的...
目录 1. DNN-HMM语音识别系统 2. 深度神经网络 前馈神经网络FNN 卷积神经网络CNN CNN TDNN 循环神经网络RNN LSTM 混合神经网络 3. 总结 4. 作业代码 1. DNN-HMM语音识别系统 DNN-HMM语音识别系统的训练流程是在我们上一节所学的GMM-HMM语音识别系统的基础上,加上了对齐和DNN训练的方式。其流程图如下图...
而随着深度学习的兴起,使用了接近30年的语音识别声学模型HMM(隐马尔科夫模型)逐渐被DNN(深度神经网络)所替代,模型精度也有了突飞猛进的变化,其中声学模型模型结构经历了从经典的GMM-HMM,到DNN-HMM,再到DNN+CTC的转变,本文列出了其中的常见模型,权当是一篇导读性质的文章,供大家学习时参考。
Class 6 基于DNN-HMM的语音识别系统 GMM-HMM语音识别系统 建模训练 对于每一个语音序列先进行特征提取,得到每一个特征序列,再通过HMM-GMM建模。 对于每个状态有一个GMM模型,对于每个词有一个HMM模型,当一段语音输入后,根据Viterbi算法得到一个序列在GMM-HMM上的概率,然后通过Viterbi回溯得到每帧属于HMM的哪个状态(...
从GMM-HMM到DNN-HMM NLP 服务编程算法语音识别qt 首先,如下图所示是一个常见的语音识别框架图,语音识别系统的模型通常由声学模型和语言模型两部分组成,分别对应于语音到音节概率的计算和音节到字概率的计算。这里我们要探讨的GMM-HMM模型属于其中的声学模型。
神经网络-隐马尔科夫模型(DNN-HMM)利用DNN的特征学习能力和HMM的序列化建模能力进行语音识别任务的处理,在很多大规模任务中,其性能远优于传统的GMM-HMM混合模型。DNN:特征的学习能力,估计观察特征的概率,预测状态的后验概率。HMM:描述语音信号的序列变化,预测后面的序列。DNN-HMM语音识别声学信号使用HMM框架建模,每个...
基于DNN-HMM的语音识别声学模型结构如下图所示,与传统的基于GMM-HMM的声学模型相比,唯一不同点在于用DNN替换了GMM来对输入语音信号的观察概率进行建模。DNN与GMM相比具有如下优点: DNN不需要对声学特征所服从的分布进行假设; DNN的输入可以采用连续的拼接帧,因而可以更好地利用上下文的信息; ...
51CTO博客已为您找到关于dnn hmm python实现的相关内容,包含IT学习相关文档代码介绍、相关教程视频课程,以及dnn hmm python实现问答内容。更多dnn hmm python实现相关解答可以来51CTO博客参与分享和学习,帮助广大IT技术人实现成长和进步。
DNN是判别模型,因为它直接对给定观测值后状态的分布 P(X|Y) 进行建模。在 HMM-DNN 这个框架中,DNN...