DNN模型python实现 dnn hmm模型 基于DNN-HMM的语音识别声学模型结构如下图所示,与传统的基于GMM-HMM的声学模型相比,唯一不同点在于用DNN替换了GMM来对输入语音信号的观察概率进行建模。DNN与GMM相比具有如下优点:DNN不需要对声学特征所服从的分布进行假设;DNN的输入可以采用连续的拼接帧,因而可以更好地利用上下文的...
DNN模型python实现dnnhmm模型 基于DNN-HMM的语音识别声学模型结构如下图所示,与传统的基于GMM-HMM的声学模型相比,唯一不同点在于用DNN替换了GMM来对输入语音信号的观察概率进行建模。DNN与GMM相比具有如下优点:DNN不需要对声学特征所服从的分布进行假设;DNN的输入可以采用连续的拼接帧,因而可以更好地利用上下文的信息;DN...
从上述的实验结果中可以看到,相对传统的GMM-HMM框架,DNN-HMM在语音识别任务上可以获得全面的提升。DNN-HMM之所以取得巨大的成功,通常被认为有三个原因:第一,DNN-HMM舍弃了声学特征的分布假设,模型更加复杂精准;第二,DNN的输入可以采用连续的拼接帧,因而可以更好地利用上下文的信息;第三,可以更好的利用鉴别性模型的...
DNN模型python实现dnn hmm模型 基于DNN-HMM的语音识别声学模型结构如下图所示,与传统的基于GMM-HMM的声学模型相比,唯一不同点在于用DNN替换了GMM来对输入语音信号的观察概率进行建模。DNN与GMM相比具有如下优点:DNN不需要对声学特征所服从的分布进行假设;DNN的输入可以采用连续的拼接帧,因而可以更好地利用上下文的信息;...