不同是:1. 隐状态的表示: hmm是onehot, RNN是分布表示,RNN的表示能力强很多,或者说在面对高维度...
HMM(Hidden Markov Model,隐马尔可夫模型) CRF(Conditional Random Field,条件随机场), RNN深度学习算法(Recurrent Neural Networks,循环神经网络)。输入条件连续 LSTM(Long Short Term Memory)则绕开了这些问题依然可以从语料中学习到长期依赖关系,输入条件不连续是用, 核心是实现了 dL(t)dh(t)和 dL(t+1)ds(t)...
因为HMM必须基于离散的适度数量的状态集合S中去状态转换,即使使用了viterbi算法,算法时间复杂度也是O(|S|2),所以一旦状态增多,那么HMM的复杂度就急速上升了,而且如果采用滑框形式来融合多个状态,一旦窗口变大,计算复杂度也指数上升了,所以HMM对于长时依赖问题也是很麻烦的。 所以RNN系列应运而生了。一方面基于非线性...
RNN更多的是函数具体形式层面的表述,是近年函数构造范式兴起后的术语,而HMM更多是概率图模型层面的表述...
我们介绍了一个递归神经网络(RNN)模型,学习组合向量表示的短语和句子的任意句法类型和长度。我们的模型为解析树中的每个节点分配一个向量和一个矩阵:向量捕获组成部分的内在含义,而矩阵捕获它如何改变邻近单词或短语的含义。该矩阵向量神经网络可以学习算子在命题逻辑和自然语言中的意义。该模型通过三个不同的实验得到...
本文介绍了一种循环神经网络(RNN)模型,该模型学习任意句法类型和长度的短语或句子的成分向量表示。本文的模型为解析树中的每个节点分配一个向量和一个矩阵:其中向量捕获成分的固有含义,而矩阵捕获其如何改变相邻单词或短语的含义。该矩阵-向量RNN可以学习命题逻辑和自然语言中算子的含义。该模型在三种不同的实验中均...
不同是:1. 隐状态的表示: hmm是onehot, RNN是分布表示,RNN的表示能力强很多,或者说在面对高维度...
在时间序列预测问题上,可能LSTM不需要做特别多的参数调整就优于HMM,自然语言处理上,BERT不需要做特别...
我们介绍了一个递归神经网络(RNN)模型,学习组合向量表示的短语和句子的任意句法类型和长度。我们的模型为解析树中的每个节点分配一个向量和一个矩阵:向量捕获组成部分的内在含义,而矩阵捕获它如何改变邻近单词或短语的含义。该矩阵向量神经网络可以学习算子在命题逻辑和自然语言中的意义。该模型通过三个不同的实验得到...