本文选自《R语言中基于混合数据抽样(MIDAS)回归的HAR-RV模型预测GDP增长》。 点击标题查阅往期内容 HAR-RV-J与递归神经网络(RNN)混合模型预测和交易大型股票指数的高频波动率 R语言预测期货波动率的实现:ARCH与HAR-RV与GARCH,ARFIMA模型比较 PYTHON用GARCH、离散随机波动率模型DSV模拟估计股票收益时间序列与蒙特卡洛可视化...
本文分析了异质自回归模型的潜力,包括跳跃预测实现波动率(RV)。对于这种方法,我们根据标准普尔500指数的5年日内数据的20年历史计算RV。我们的结果表明,基础HAR-RV-J模型确实能够提供令人满意的RV预测。 有问题欢迎联系我们! 本文摘选 《 R语言HAR-RV-J与递归神经网络(RNN)混合模型预测和交易大型股票指数的高频波动率...
HAR-RV-J与递归神经网络(RNN)混合模型预测和交易大型股票指数的高频波动率 R语言预测期货波动率的实现:ARCH与HAR-RV与GARCH,ARFIMA模型比较 PYTHON用GARCH、离散随机波动率模型DSV模拟估计股票收益时间序列与蒙特卡洛可视化 极值理论 EVT、POT超阈值、GARCH 模型分析股票指数VaR、条件CVaR:多元化投资组合预测风险测度分析 G...
从结果我们知道基于ARFIMA的模型具有与HAR-RV相似的准确度,并且两者都比GARCH模型好得多。 本文摘选 《 R语言预测波动率的实现:ARCH模型与HAR-RV模型 》 ,点击“阅读原文”获取全文完整资料。 点击标题查阅往期内容 PYTHON用GARCH、离散随机波动率模型DSV模拟估计股票收益时间序列与蒙特卡洛可视化 极值理论 EVT、POT超阈...
R语言预测期货波动率的实现:ARCH与HAR-RV与GARCH,ARFIMA模型比较 PYTHON用GARCH、离散随机波动率模型DSV模拟估计股票收益时间序列与蒙特卡洛可视化 极值理论 EVT、POT超阈值、GARCH 模型分析股票指数VaR、条件CVaR:多元化投资组合预测风险测度分析 Garch波动率预测的区制转移交易策略 ...
R语言中基于混合数据抽样(MIDAS)回归的HAR-RV模型预测GDP增长 HAR-RV-J与递归神经网络(RNN)混合模型预测和交易大型股票指数的高频波动率 R语言预测期货波动率的实现:ARCH与HAR-RV与GARCH,ARFIMA模型比较 PYTHON用GARCH、离散随机波动率模型DSV模拟估计股票收益时间序列与蒙特卡洛可视化 ...
ARFIMA是分整自回归移动平均模型,其具有与ARMA模型相同的表示形式,但差分参数d可以是非整数值: 在差分参数d是非整数的情况下,则可以如下操作 在R中,我们编程探索HAR-RV和HAR-RV-CJ模型。 MSE如下所列 MSE.ARFIMA11.0663781087345 * 10 ^( - 7)MSE.ARFIMA21.06634734745652 * 10 ^( - 7)MSE.ARFIMA31.068469834458...
作为另一个演示,我们使用midasr来预测每日实现的波动率。Corsi(2009)提出了一个简单的预测每日实际波动率的模型。实现波动率的异质自回归模型(HAR-RV)定义为 我们假设一周有5天,一个月有4周。该模型是MIDAS回归的特例: 为了进行经验论证,我们使用了由Heber,Lunde,Shephard和Sheppard(2009)提供的关于股票指数的已实...
> DJI\_RV = DJI\_RV\[!is.na(DJI_RV)\]; #删除缺失值 第二步,我们计算传统的异构自回归(HAR)模型。由于HAR模型只是线性模型的一种特殊类型,因此也可以通过以下方式实现:harModel函数的输出是lm的子级harModel lm,线性模型的标准类。图绘制了harModel函数的输出对象,水平轴上有时间,在垂直轴上有观察到的...
R语言预测期货波动率的实现:ARCH与HAR-RV与GARCH,ARFIMA模型比较 PYTHON用GARCH、离散随机波动率模型DSV模拟估计股票收益时间序列与蒙特卡洛可视化 极值理论 EVT、POT超阈值、GARCH 模型分析股票指数VaR、条件CVaR:多元化投资组合预测风险测度分析 Garch波动率预测的区制转移交易策略 ...