knowledge of machine learning and deep learning. It introduces tools such as NumPy for numerical processing, Pandas for panel data analysis, Matplotlib for visualization, Scikit-learn for machine learning, and Pytorch for deep learning with Python. It also serves as a long-term reference manual.....
Data Science and Machine Learning with Python - Hands On!Frank Kane
$ mkdir -p $ML_PATH 接下来是创建你自己的Python环境,本书中作者推荐Python3 虽然Python2.7+也可以,但是作者认为它已经过时了。 你需要的工作Python Modules: Jupyter, NumPy, Pandas, Matplotlib, and Scikit-Learn 关于Python环境的安装,在作者github首页有介绍: https://github.com/ageron/handson-ml/tree/ma...
Hands-On Machine Learning with scikit:learn and Scientific Python Toolkits是Tarek Amr创作的计算机网络类小说,QQ阅读提供Hands-On Machine Learning with scikit:learn and Scientific Python Toolkits部分章节免费在线阅读,此外还提供Hands-On Machine Learning wit
QQ阅读提供Hands-On Machine Learning with scikit:learn and Scientific Python Toolkits,版权信息在线阅读服务,想看Hands-On Machine Learning with scikit:learn and Scientific Python Toolkits最新章节,欢迎关注QQ阅读Hands-On Machine Learning with scikit:learn
Hands-On Python Machine Learning with Real World Projects 创建者 Sayman Creative Institute MP4 |视频:h264、1280×720 |音频:AAC,44.1 KHz,2 通道 类型:在线学习 |语言: 英语 |持续时间: 13 讲座 ( 4h 8m ) |大小: 1.3 GB 基于Python 的机器学习课程,包含实践练习和案例研究 ...
Genre: eLearning | Language: English | Duration: 39 Lectures ( 3h 4m ) | Size: 2.2 GB Master Machine Learning with Python: Build, Train & Deploy Models with Real-World Projects What you’ll learn: Implement Machine Learning algorithms in Python using libraries like scikit-learn and TensorFlow...
It replaces the feature names with x0, x1, x2, and so on. However, with our Python skills at hand, we can reclaim our column names. Let's do exactly that using the following block of code: feature_translator = [ (f'x{i}', feature) for i, feature in enumerate(x_train.columns...
当当网图书频道在线销售正版《【预订】Machine Learning in Python: Hands on Machine Learning with Python Tools, Concepts and Techniques》,作者:,出版社:Independently Published。最新《【预订】Machine Learning in Python: Hands on Machine Learning with Pyth
1.Machine Learning概念: 提到机器学习,很多人会想到机器人管家、终结者等一些不着边际,高大上的事物。实际上,机器学习在很多领域已经存在多年,例如:光学字符识别(OCR)。第一个机器学习应用是垃圾邮件过滤器,随后出现了数百个机器学习程序。本文介绍机器学习的一些重要概念(每位数据科学家都应该清楚):有监督与无监督...