Hadoop是一个由Apache基金会所开发的分布式系统基础架构,主要就是解决数据存储和数据分析计算的问题(通过HDFS和MapReduce实现)。Hive是基于Hadoop的数据仓库工具,可以存储,查询,分析数据,方便决策人员和数据分析人员统计分析历史数据。Spark是一个基于内存计算的开源的集群计算系统,目的是让数据分析更加快速。从Hadoop到...
Hive on Spark是Hive既作为存储又负责sql的解析优化,Spark负责执行。这里Hive的执行引擎变成了Spark,不再是MR,这个要实现比Spark on Hive麻烦很多, 必须重新编译你的spark和导入jar包,不过目前大部分使用的确实是spark on hive。 Hive默认使用MapReduce作为执行引擎,即Hive on MapReduce。实际上,Hive还可以使用Tez和S...
使用内存存储中间计算结果 借助这些亮点优化,Spark 比 MapReduce 运行速度快很多。上图是逻辑回归机器学习算法的运行时间比较 ,Spark 比 MapReduce 快 100 多倍 当然Spark 为了保留 Hive 的SQL优势,也推出了 Spark SQL,将 SQL 语句解析成 Spark 的执行计划,在 Spark 上执行。 Tom哥有话说: Spark 像个孙猴子一样...
因此可以看出,Spark 其实是依赖于第三方的数据源的,但这也是 Spark 灵活的地方,它能够配合HBase、Hive,以及关系型数据库Oracle、Mysql等多种类型的数据工作。 从上图可以看出,人们现在甚至已经把spark纳入到hadoop的生态之中了(虽然这种说法是否妥当还需验证),足以见证:spark仅仅只是一个计算框架,它不能,也没有必要...
他们是Hive on Tez / Spark和SparkSQL。它们的设计理念是,MapReduce慢,但是如果我用新一代通用计算引擎Tez或者Spark来跑SQL,那我就能跑的更快。而且用户不需要维护两套系统。这就好比如果你厨房小,人又懒,对吃的精细程度要求有限,那你可以买个电饭煲,能蒸能煲能烧,省了好多厨具。
hadoop、spark、Hbase、Hive、hdfs简介 Hbase:是一个nosql数据库,和mongodb类似 hdfs:hadoop distribut file system,hadoop的分布式文件系统 Hive:hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件(或者非结构化的数据)映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运...
在hadoop推出了hive之后,spark也推出了自己的spark SQL。不过后来hive也支持使用spark作为计算引擎代替MapReduce了,这两者的性能上差异也就很小了,我个人还是更喜欢hive一点,毕竟写起来方便。 另外spark除了计算框架之外,当中也兼容了一些机器学习的库,比如MLlib,不过我没有用过,毕竟现在机器学习的时代都快结束了。很少...
Spark是一个快速、通用的大数据处理引擎,它支持实时流处理、机器学习等多种计算模式,其性能远超Hive。Spark SQL提供了类似Hive的SQL查询能力,但其执行速度更快,更适合对实时数据进行交互式查询。Hive与Spark的协同工作,通常是在以下几个方面体现:1. 数据导入导出:Hive可以将结构化的数据存储在Hadoop的HDFS上,而...
机器学习、数据挖掘等各种大数据处理都离不开各种开源分布式系统,hadoop用户分布式存储和map-reduce计算,spark用于分布式机器学习,hive是分布式数据库,hbase是分布式kv系统,看似互不相关的他们却都是基于相同的hdfs存储和yarn资源管理,本文通过全套部署方法来让大家深入系统内部以充分理解分布式系统架构和他们之间的关系 本文...
部署Spark on Hive 最近需要验证一些分布式环境和配置相关的内容,所以就从头搭了一套环境,目前只有Hadoop+Spark+Hive,后续如果有需要会在现有基础上再往上堆其它组件,例如HBase,大家可以持续关注。 注意:文中显示为<username>的部分,都需要用自己的用户名替换掉,比如root。 前期准备 虚拟机版本选择 从稳定性角度考虑...