Haar-like特征是由Haar小波函数组成的,这是一种一维离散小波变换,可用于处理数字信号和图像。 Haar-like特征较容易理解和计算,且可以在不同尺度和位置上进行计算。这种特征是一种基于像素值的特征,可用于描述物体在图像中的局部或全局的亮度差异。Haar-like特征在物体检测、人脸识别、行人检测等领域中有着广泛的应用...
Haar-like是一种非常经典的特征提取算法,尤其是它与AdaBoost组合使用时对人脸检测有着不错的效果,虽然只是在当时而言。OpenCV也对AdaBoost与Haar-like组成的级联人脸检测做了封装,所以一般提及Haar-like的时候,一般都会和AdaBoost,级联分类器,人脸检测,积分图等等一同出现。但是Haar-like本质上只是一种特征提取算法,下面...
Haar-like特征值的计算就是用图中矩形模板中白色矩形内所有像素值的和减去黑色矩形内所有像素值的和。Haar-like特征可以有效的提取图像的纹理特征,各模板通过平移、缩放提取不同位置和尺度的特征值。所以Haar-like特征的数量是巨大的,对于给定的W×H的图片,其一个矩形特征的数量为: 其中,wxh为特征模板尺寸 表示特征...
其中的参数x为特征窗口,p代表着不等式的不同方向,取值为1和-1,g为矩形窗口所对应的Haar-like特征值,θ弱分类器的判断阈值。 最基本的弱分类器只包含一个Haar-like特征,也就是说决策树只有一层,被称为树桩(stump)。要比较输入图像的特征值和弱分类器特征,需要一个阈值,当输入图像的特征值大于该阈值时判定其...
Haar-like特征——即Haar特征,是计算机视觉领域一种常用的特征描述算子。它最早用于人脸描述。 目前常用的Haar-like特征可以分为以下几类:线性特征、边缘特征、点特征(中心特征)、对角线特征。 每一种特征的计算都是由黑色填充区域的像素值之和与白色填充区域的像素值之和的差值。而计算出来的这个差值就是所谓的Haar...
引言: Haar-like特征多用于人脸检测、行人检测,等目标检测;Haar-like特征可以理解为卷积模板(如同prewitt、sobel算子,当然不完全一样),Haar-like特征模板内只有白色和黑色两种矩形,并定义该模板的特征值为白色矩形像素和减去黑色矩形像素和。Haar特征值反映了图像的灰度变化情况。例如:脸部的一些特征能由矩形特征简单的...
本系列文章旨在学习如何在opencv中基于haar-like特征训练自己的分类器,并且用该分类器用于模式识别。该过程大致可以分为一下几个大步骤: 1.准备训练样本图片,包括正例及反例样本 2.生成样本描述文件 3.训练样本 4.目标识别 === 本文主要对步骤1、步骤
关于Haar-like特征的代码实现,我们可以利用OpenCV库来完成。下面是一个使用Python和OpenCV实现Haar-like特征人脸检测的示例代码。这个示例涵盖了从加载图像、初始化Haar-like特征分类器到检测并显示结果的全过程。 1. 导入必要的库 首先,我们需要导入OpenCV库和其他必要的Python库。 python import cv2 2. 加载图像或视...