GSEA富集分析、GO分析和KEGG分析都是生物信息学中用于理解基因功能和通路的重要工具。 GO(Gene Ontology)是一个描述基因功能的综合性数据资源,包括生物过程、细胞组成和分子功能三个部分,能揭示差异表达基因与哪些生物学功能显著相关。 KEGG(Kyoto Encyclopedia of Genes and Genomes)则是研究Pathway的数据库,整合了基因...
和KEGG和GO分析有什么区别? 但是,一般的差异分析(GO和Pathway)往往侧重于比较两组间的基因表达差异,集中关注少数几个显著上调或下调的基因,这容易遗漏部分差异表达不显著却有重要生物学意义的基因,忽略一些基因的生物特性、基因调控网络之间的关系及基因功能和意义等有价值的信息。而GSEA不需要指定明确的差异基因阈值,算...
KEGG是功能富集,即基因集(多个基因)可能显著的集中在哪些功能上面,也可以说是在哪些通路上的富集。类似的通路数据库有wikipathway,reactome等。 GSEA:基因集富集分析,用于确定先验基因集是否在两种生物状态(例如表型)之间差异显著。 区别: GO/KEGG差异基因的一刀切法——仅关注少数几个显著上调或下调的基因,容易遗漏...
GO、KEGG和GSEA在基因富集分析中各有侧重。GO更注重单个基因的功能描述,KEGG强调基因在通路和功能集中的集中分布,而GSEA则侧重于识别特定基因集在不同生物状态下的差异表达。它们之间的主要区别在于分析策略和关注点,GO和KEGG侧重于单个基因或基因集的富集,而GSEA则关注于特定基因集在不同条件下的差异表...
但是,一般的差异分析(GO和Pathway)往往侧重于比较两组间的基因表达差异,集中关注少数几个显著上调或下调的基因,这容易遗漏部分差异表达不显著却有重要生物学意义的基因,忽略一些基因的生物特性、基因调控网络之间的关系及基因功能和意义等有价值的信息。而GSEA不需要指定明确的差异基因阈值,算法会根据实际数据的整体趋势,...